Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
I(x,y) có tung độ dương nên y>0 và thuộc (d)
nên I(x;-3x-4)
y>0
=>-3x-4>0
=>-3x>4
=>x<-4/3
Theo đề, ta có: d(I;Ox)=d(I;Oy)=R
(C) tiếp xúc với Ox,Oy nên |x|=|-3x-4|
=>3x+4=x hoặc -3x-4=x
=>2x=-4 hoặc -4x=4
=>x=-2(nhận) hoặc x=-1(loại)
=>I(-2;2)
R=|2|=2
=>(C): (x+2)^2+(y-2)^2=4
=>B
I(x,y) có tung độ dương nên y>0 và thuộc (d)
nên I(x;-3x-4)
y>0
=>-3x-4>0
=>-3x>4
=>x<-4/3
Theo đề, ta có: d(I;Ox)=d(I;Oy)=R
(C) tiếp xúc với Ox,Oy nên |x|=|-3x-4|
=>3x+4=x hoặc -3x-4=x
=>2x=-4 hoặc -4x=4
=>x=-2(nhận) hoặc x=-1(loại)
=>I(-2;2)
R=|2|=2
=>(C): (x+2)^2+(y-2)^2=4
=>B
a) Ta tìm bán kính R2 = IM2 => R2 = IM = (2 + 2)2 + (-3 -32) = 52
Phương trình đường tròn (C): (x +2)2 + (y – 3)2 =52
b) Đường tròn tiếp xúc với đường thẳng d nên khoảng cách từ tâm I tới đường thẳng d phải bằng bán kính đường tròn:
d(I; d) = R
Ta có : R = d(I; d) = \(=\)
Phương trình đường tròn cần tìm là:
(x +1)2 + (y – 2)2 = =>( x +1)2 + (y – 2)2 =
<=> 5x2 + 5y2 +10x – 20y +21 = 0
c) Tâm I là trung điểm của AB, có tọa độ :
x = \(\dfrac{1+7}{2}\) = 4; y = \(\dfrac{1+5}{2}\) = 3 => I(4; 3)
AB = \(2\sqrt{13}\) => R =\(\sqrt{13}\)
=> (x -4 )2 + (y – 3)2 =13
a.
\(R=d\left(I;d\right)=\dfrac{\left|3-5.\left(-2\right)+1\right|}{\sqrt{1^2+\left(-5\right)^2}}=\dfrac{14}{\sqrt{26}}\)
b.
\(d\left(M;\Delta\right)=\dfrac{\left|4sina+4\left(2-sina\right)\right|}{\sqrt{cos^2a+sin^2a}}=8\)
Đề bài sai
Điểm \(M\left(-5;2\right)\) không thuộc \(\Delta\) nên (C) ko thể tiếp xúc với \(\Delta\) tại M
Cảm ơn thầy đã góp ý ạ, nếu đề bài đúng thì hướng làm ra sao vậy ạ?
Để đường thẳng tiếp xúc với đường tròn thì \(d\left( {I,\Delta } \right) = R \Leftrightarrow \frac{{\left| {3.\left( { - 1} \right) + 4.2 + m} \right|}}{{\sqrt {{3^2} + {4^2}} }} = 2 \Leftrightarrow \left[ \begin{array}{l}m = 5\\m = - 15\end{array} \right.\)
Để đường thẳng tiếp xúc với đường tròn thì
\(d\left(I,\Delta\right)=R\Leftrightarrow\dfrac{\left|3.\left(-1\right)+4.2+m\right|}{\sqrt{3^2+4^2}}=2\Leftrightarrow\left[{}\begin{matrix}m=5\\m=-15\end{matrix}\right.\)
Gọi M là điểm tiếp xúc hai đường tròn.
Đường tròn đã cho có tâm \(I'=\left(1;3\right)\), bán kính \(R'=2\)
\(\Rightarrow II'=\sqrt{\left(1+4\right)^2}=5\)
\(\Rightarrow\) Bán kính đường tròn cần tìm \(R=3\)
Phương trình đường tròn: \(\left(x+4\right)^2+\left(y-3\right)^2=9\)