K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
3 tháng 8 2023

1) \(y'=-2x^3-2x\)

Với x=0, ta có: \(y'\left(0\right)=0\)

⇒ Phương trình tiếp tuyến tại điểm M(0;2) là: y=0(x-0)+2=2

 

2) \(y'=-\dfrac{1}{\left(x+1\right)^2}\)

Với x=2, \(y'\left(2\right)=-\dfrac{1}{\left(2+1\right)^2}=-\dfrac{1}{9}\)

⇒ Phương trình tiếp tuyến tại điểm (2;\(\dfrac{4}{3}\)) là: \(y=-\dfrac{1}{9}\left(x-2\right)+\dfrac{4}{3}=-\dfrac{1}{9}x+\dfrac{14}{9}\)

9 tháng 4 2017

y' = - .

a) Ta có: \(y'\left(x_0\right)=k\Leftrightarrow\) y' = -4. \(\Rightarrow\)k= -4. Vậy phương trình tiếp tuyến của hypebol tại điểm (; 2) là y - 2 = -4(x - ) hay y = -4x + 4.

b)Ta có:\(y'\left(x_0\right)=k\Leftrightarrow\) y' (-1) = -1.\(\Rightarrow\) k= -1. Ngoài ra, ta có y(-1) = -1. Vậy phương trình tiếp tuyến tại điểm có tọa độ là -1 là

y - (-1) = -[x - (-1)] \(\Leftrightarrow\) y = -x - 2.

c) Gọi x0 là hoành độ tiếp điểm. Ta có

y' (x0) = - <=> - = - <=> x02 = 4 <=> x0 = ±2.

Với x0 = 2 ta có y(2) = , phương trình tiếp tuyến là

y - = - (x - 2) \(\Leftrightarrow\) y = x + 1.

Với x0 = -2 ta có y (-2) = - , phương trình tiếp tuyến là

y - = - [x - (-2)] \(\Leftrightarrow\) y = - x -1

4 tháng 4 2017

a) Ta có:

y′=f′(x)=−2(x−1)2⇒f′(2)=−2(2−1)2=−2y′=f′(x)=−2(x−1)2⇒f′(2)=−2(2−1)2=−2

Suy ra phương trình tiếp tuyến cần tìm là:

y – 3 = -2(x – 2) ⇔ y = -2x + 7

b) Ta có: y’ = f’(x) = 3x2 + 8x ⇒ f’(-1) = 3 – 8 = -5

Mặt khác: x0 = -1 ⇒ y0 = -1 + 4 – 1 = 2

Vậy phương trình tiếp tuyến cần tìm là:

y – 2 = -5 (x + 1) ⇔ y = -5x – 3

c) Ta có:

y0 = 1 ⇒ 1 = x2 – 4x + 4 ⇒ x02 – 4x0 + 3 = 0 ⇒ x0 = 1 hoặc x0 = 3

f’(x) = 2x – 4 ⇒ f’(1) = -2 và f’(3) = 2

Vậy có hai tiếp tuyến cần tìm có phương trình là:

y – 1 = -2 (x – 1) ⇔ y = -2x + 3

y – 1 = 2 (x – 3) ⇔ y = 2x – 5



26 tháng 5 2017

TenAnh1 TenAnh1 A = (-4.3, -9.06) A = (-4.3, -9.06) A = (-4.3, -9.06) B = (11.06, -9.06) B = (11.06, -9.06) B = (11.06, -9.06)

6 tháng 4 2017

Tập xác định: \(D= \mathbb{R}\setminus \{1\}\)

Ta có: \(y'=\dfrac{-1}{(x-1)^2} \ \forall x\in D\)

a) Do \(y_A=3\)\(A\in (h)\) nên ta có:

\(\dfrac{2x_A-1}{x_A-1}=3 \Leftrightarrow x_A=2 \ \ (t/m)\)

Suy ra tiếp tuyến qua A của (h) là:

\(y-y_A=y'(x_A)(x-x_A)\\ \Leftrightarrow y-3=-1(x-2)\\ \Leftrightarrow x+y-5=0\)

6 tháng 4 2017

Giả sử tiếp điểm của tiếp tuyến đó với (h) là \(B(x_B,y_B), \ x_B \ne 1\)

Do \(B\in(h)\) nên \(y_B=\dfrac{2x_B-1}{x_B-1}\)

Khi đó ta có:

\(MB=2 \Leftrightarrow \sqrt{(x_B)^2+(\dfrac{2x_B-1}{x_B-1}-1)^2}=2 \Leftrightarrow x^2_B+\dfrac{x^2_B}{(x_B-1)^2}=4 \\ \Leftrightarrow x^2_B(x_B-1)^2+x^2_B=4(x_B-1)^2 \Leftrightarrow x^4_B-2x^3_B-2x^2_B+8x_B-4=0\\ \Leftrightarrow (x^2_B-x_B+1)^2=5(x_B-1)^2\\ \Leftrightarrow \left[ \begin{array}{} x^2_B-x_B+1=\sqrt{5}(x_B-1)\\ x^2_B-x_B+1=-\sqrt{5}(x_B-1) \end{array}{} \right.\\ \Leftrightarrow \left[ \begin{array}{} x^2_B-(\sqrt{5}+1)x_B+\sqrt{5}+1=0\ (vô nghiệm)\\ x^2_B+(\sqrt{5}-1)x_B+1-\sqrt{5}=0 \end{array}{} \right.\\ \Leftrightarrow \left[ \begin{array}{} x_B=\dfrac{1-\sqrt{5}+\sqrt{2+2\sqrt{5}}}{2}\\ x_B=\dfrac{1-\sqrt{5}-\sqrt{2+2\sqrt{5}}}{2} \end{array}{} \right.\\ \)Từ đó với cách tìm tiếp tuyến tương tự như câu (a) em sẽ viết được tiếp tuyến!