Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\Rightarrow\left(x^2+2\times5x+25\right)+\left(y^2+2y+1\right)\)
\(\Rightarrow\left(x+5\right)^2+\left(y+1\right)^2\)
bài 1:
a) x2 + 10x + 26 + y2 + 2y
= (x2 + 10x + 25) + (y2 + 2y + 1)
= (x + 5)2 + (y + 1)2
b) z2 - 6z + 5 - t2 - 4t
= (z - 3)2 - (t + 2)2
c) x2 - 2xy + 2y2 + 2y + 1
= (x2 - 2xy + y2) + (y2 + 2y + 1)
= (x - y)2 + (y + 1)2
d) 4x2 - 12x - y2 + 2y + 1
= (4x2 - 12x ) - (y2 + 2y + 1)
= ......................................
ok mk nhé!! 4545454654654765765767587876968345232513546546575675767867876876877687975675
\(x^2+xy-2y^2=0< =>\left(x-y\right)\left(x+2y\right)=0< =>\)x=y (vì x+2y>0 với x;y>0)
A= (2013x2+2x2)(2014x2+2x2) = 2015.2016.x4
Ta có: \(x=2013\Leftrightarrow x+1=2014\)
Thay vào ta được
\(C=x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+x+1\)
\(C=x^4-x^4-x^3+x^3+x^2-x^2-x+x+1\)
\(C=1\)
Vậy C = 1
a) \(x^2+10x+26+y^2+2y\)
\(=x^2+2.5x+25+1+y^2+2y\)
\(=\left(x^2+2.5x+25\right)+\left(1+2y+y^2\right)\)
\(=\left(x+5\right)^2+\left(1+y\right)^2\)
b) \(x^2-2xy+2y^2+2y+1\)
\(=x^2-2xy+y^2+y^2+2y+1\)
\(=\left(x^2-2xy+y^2\right)+\left(y^2+2y+1\right)\)
\(=\left(x-y\right)^2+\left(y+1\right)^2\)
c) \(z^2-6z+13+t^2+4t\)
\(=z^2-2.3z+9+4+t^2+4t\)
\(=\left(z^2-2.3x+9\right)+\left(4+4t+t^2\right)\)
\(=\left(z-3\right)^2+\left(2+t\right)^2\)
d) \(4x^2+2z^2-4xz-2z+1\)
\(=4x^2+z^2+z^2-4xz-2z+1\)
\(=\left(4x^2-4xz+z^2\right)+\left(z^2-2z+1\right)\)
\(=\left(2x-z\right)^2+\left(z-1\right)^2\)
a: \(=x^2\left(x-y\right)+2014\left(x-y\right)=\left(x-y\right)\left(x^2+2014\right)\)
a) \(x^2+10x+26+y^2+2y\)
\(=\left(x^2+10x+25\right)+\left(y^2+2y+1\right)\)
\(=\left(x+5\right)^2+\left(y+1\right)^2\)
b) \(x^2-2xy+2y^2+2y+1=\left(x-y\right)^2+\left(y+1\right)^2\)
thay 2014 = x + 1
sau đó biến đổi rút gọn
a) \(x^2+10x+26+y^2+2y\)
\(=\left(x^2+10x+25\right)+\left(1+2y+y^2\right)\)
\(=\left(x+5\right)^2+\left(1+y\right)^2\)
b) \(x^2-2xy+2y^2+2y+1\)
\(=\left(x^2-2xy+y^2\right)+\left(y^2+2y+1\right)\)
\(=\left(x-y\right)^2+\left(y+1\right)^2\)
c) \(2x^2+2y^2=2\left(x^2+y^2\right)\)