Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các hệ thức về cạnh và đường cao là:
\(DE^2=EH\cdot EF\); \(DF^2=FH\cdot FE\)
\(DH^2=HE\cdot HF\)
\(DH\cdot FE=DE\cdot DF\)
\(\dfrac{1}{DH^2}=\dfrac{1}{DE^2}+\dfrac{1}{DF^2}\)
1. Ta có : sin2anpha + cos2anpha=1
=> (0.6)2 + cos2anpha =1
=> 0.36 + cos2anpha = 1
=> cos2anpha = 0.64
=>cos anpha =0.8
A B C
Sin B = \(\frac{AC}{BC}\); cos B = \(\frac{AB}{BC}\) ; tgB = \(\frac{AC}{AB}\); cot gB = \(\frac{AB}{BC}\)
Do góc B và C là hai góc phụ nhau nên :
sin C = cos B = \(\frac{AB}{BC};cosB=\frac{AB}{BC};cosC=sinB=\frac{AC}{BC}\)
\(tgC=cotgB=\frac{AB}{BC};cotgC=tgB=\frac{AC}{AB}\)
Chúc bạn học tốt !!!
a: ΔDEF vuông tại D
=>\(DE^2+DF^2=EF^2\)
=>\(EF^2=0,9^2+12^2=144,81\)
=>\(EF=\sqrt{144,81}\)(cm)
Xét ΔDEF vuông tại D có \(tanE=\dfrac{DF}{DE}\)
=>\(tanE=\dfrac{12}{0,9}=\dfrac{120}{9}=\dfrac{40}{3}\)
b: Xét ΔDEF vuông tại D có
\(sinF=\dfrac{DE}{EF}=\dfrac{0.9}{\sqrt{144,81}}\)
\(cosF=\dfrac{DF}{EF}=\dfrac{12}{\sqrt{144,81}}\)
\(tanF=\dfrac{0.9}{12}=\dfrac{9}{120}=\dfrac{3}{40}\)
\(cotF=\dfrac{12}{0.9}=\dfrac{40}{3}\)
( ̄y▽ ̄)╭ Thay like cái nào !!
Viết hệ thức lượng cho tam giác DEF là viết các công thức liên hệ giữa các cạnh và đường cao trong tam giác DEF. Có ba công thức chính:
1/2ah, trong đó a là độ dài một cạnh và h là độ dài đường cao hạ từ đỉnh đối diện với cạnh đó.