Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x2+10x+26+y2+2y
=x2+10x+25+y2+2y+1
=(x+5)2+(y+1)2
b) z2-6z+5-t2-4t
=z2-6z+9-t2-4t-4
=(z-3)2-(t2+4t+4)
=(z-3)2-(t+2)2
c)x2-2xy+2y2+2y+1
=x2-2xy+y2+y2+2y+1
=(x-y)2+(y+1)2
d) 4x2-12x-y2+2y+8
=4x2-12x+9-y2+2y-1
=(2x-3)2-(y2-2y+1)
=(2x-3)2-(y-1)2
a)\(x^2+10x+26+y^2+2y\)
\(=x^2+10x+25+y^2+2y+1\)
\(=\left(x+5\right)^2+\left(y+1\right)^2\)
b)\(x^2-2xy+2y^2+1\)
\(=x^2-2xy+y^2+y^2+1\)
\(=\left(x-y\right)^2+y^2+1\)
c có lẽ sai ?
a) \(x^6-4=\left(x^3\right)^2-2^2=\left(x^3-2\right).\left(x^3+2\right)\)
b) \(-9x^2+1=1^2-\left(3x\right)^2=\left(1-3x\right).\left(1+3x\right)\)
c) \(x^{10}-9=\left(x^5\right)^2-3^2=\left(x^5-3\right).\left(x^5+3\right)\)
mk chỉ làm đk bài 1 thui ,thông cảm cho mk nha bạn
\(a;x^6-4=\left(x^3\right)^2-2^2=\left(x^3-2\right)\left(x^3+2\right)\)
\(b;-9x^2+1=1^2-3x^2=\left(1-3x\right).\left(1+3x\right)\)
\(c;x^{10}-9=\left(x^5\right)^2-3^2=\left(x^5-3\right).\left(x^5+3\right)\)
\(#LTH\)
a) \(x^2+10x+26+y^2+2y\)
\(=\left(x^2+10x+25\right)+\left(y^2+2y+1\right)\)
\(\left(x+5\right)^2+\left(y+1\right)^2\)
b) \(x^2-2xy+2y^2+2y+1\)
\(=\left(x^2-2xy+y^2\right)+\left(y^2+2y+1\right)\)
\(=\left(x-y\right)^2+\left(y+1\right)^2\)
c) \(z^2-6z+13+t^2+4t\)
\(=\left(z^2-6x+9\right)+\left(t^2+4t+4\right)\)
\(=\left(z-3\right)^2+\left(t+2\right)^2\)
d) \(4x^2-2z^2-2xz-2z+1\)
\(=\left(4x^2-4xz+z^2\right)+\left(z^2-2z+1\right)\)
\(=\left(2x-z\right)^2+\left(z-1\right)^2\)
\(x^2+10x+26+y^2+2y=\left(x^2+10x+25\right)+\left(y^2+2y+1\right)=\left(x+5\right)^2+\left(y+1\right)^2\)
\(a.x^2-4x+4+y^2+2y+1\)
\(=\left(x-2\right)^2+\left(y+1\right)^2\)
\(b.x^2+10x+25+x^2-2xy+y^2\)
\(=\left(x+5\right)^2+\left(x-y\right)^2\)
1a/ z2 - 6z + 5 - t2 - 4t = z2 - 2 . 3z + 32 - 4 - t2 - 4t = (z2 - 2 . 3z + 32) - (22 + 2 . 2t + t2) = (z - 3)2 - (2 + t)2
b/ x2 - 2xy + 2y2 + 2y2 + 1 = x2 - 2xy + y2 + y2 + 2y + 1 = (x2 - 2xy + y2) + (y2 + 2y + 1) = (x - y)2 + (y + 1)2
c/ 4x2 - 12x - y2 + 2y + 8 = (2x)2 - 12x - y2 + 2y + 32 - 1 = [ (2x)2 - 2 . 3 . 2x + 32 ] - (y2 - 2y + 1) = (2x - 3)2 - (y - 1)2
2a/ (x + y + 4)(x + y - 4) = x2 + xy - 4x + xy + y2 - 4y + 4x + 4y + 16 = x2 + (xy + xy) + (-4x + 4x) + (-4y + 4y) + y2 + 16
= x2 + 2xy + y2 + 42 = (x + y)2 + 42
b/ (x - y + 6)(x + y - 6) = x2 + xy - 6x - xy - y2 + 6y + 6x + 6y - 36 = x2 + (xy - xy) + (-6x + 6x) + (6y + 6y) - y2 - 36
= x2 - y2 + 12y - 62 = x2 - (y2 - 12y + 62) = x2 - (y2 - 2 . 6y + 62) = x2 - (y - 6)2
c/ (y + 2z - 3)(y - 2z - 3) = y2 -2yz - 3y + 2yz - 4z2 - 6z - 3y + 6z + 9 = y2 + (-2yz + 2yz) + (-3y - 3y) + (-6z + 6z) - 4z2 + 9
= y2 - 6y - 4z2 + 9 = (y2 - 6y + 9) - 4z2 = (y - 3)2 - (2z)2
d/ (x + 2y + 3z)(2y + 3z - x) = 2xy + 3xz - x2 + 4y2 + 6yz - 2xy + 6yz + 9z2 - 3xz = (2xy - 2xy) + (3xz - 3xz) - x2 + (6yz + 6yz) + 9z2 + 4y2
= -x2 + 4y2 + 12yz + 9z2 = (4y2 + 12yz + 9z2) - x2 = [ (2y)2 + 2 . 2 . 3yz + (3z)2 ] - x2 = (2y + 3z)2 - x2
\(x^2-2xy+2y^2+2y+1=\left(x^2-2xy+y^2\right)+\left(y^2+2y+1\right)=\left(x-y\right)^2+\left(y+1\right)^2\)
\(x^2+10x+26+y^2+2y=\left(x^2+10x+25\right)+\left(y^2+2y+1\right)=\left(x+5\right)^2+\left(y+1\right)^2\)