Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) $125^3:25^4=(5^3)^3:(5^2)^4=5^9:5^8=5^1$
$16^4:4^2=(4^2)^4:4^2=4^8:4^2=4^6$
$27^8:9^4=(3^3)^8:(3^2)^4=3^{24}:3^8=3^{16}$
$125^5:25^3=(5^3)^5:(5^2)^3=5^{15}:5^6=5^9$
$4^{14}:5^{28}=(2^2)^{14}:5^{28}=2^{28}:5^{28}=(\dfrac{2}{5})^{28}$
b) $12^n:2^{2n}=12^n:(2^2)^n=12^n:4^n=3^n$
$64^4.16^5.4^{20}=(4^3)^4.(4^2)^5.4^{20}=4^{12}.4^{10}.4^{20}=4^{42}$
a) $3^8:3^6=3^{8-6}=3^2$
$19^7:19^3=19^{7-3}=19^4$
$2^{10}:8^3=2^{10}:(2^3)^3=2^{10}:2^9=2^{10-9}=2^1$
$12^7:6^7=(12:6)^7=2^7$
$27^5:81^3=(3^3)^5:(3^4)^3=3^{15}:3^{12}=3^{15-12}=3^3$
b) $10^6:10=10^{6-1}=10^5$
$5^8:25^2=5^8:(5^2)^2=5^8:5^4=5^{8-4}=5^4$
$4^9:64^2=4^9:(4^3)^2=4^9:4^6=4^{9-6}=4^3$
$2^25:32^4=2^{25}:(2^5)^4=2^{25}:2^{20}=2^{25-20}=2^5$
$18^3:9^3=(18:9)^3=2^3$
\(\cdot3^8:3^6=3^{8-6}=3^2\)
\(\cdot19^7:19^3=19^{7-3}=19^4\)
\(\cdot2^{10}:8^3=2^{10}:\left(2^3\right)^3=2^{10}:2^9=2\)
\(\cdot12^7:6^7=\left(12:6\right)^7=2^7\)
\(\cdot27^5:81^3=\left(3^3\right)^5:\left(3^4\right)^3=3^{15}:3^{12}=3^3\)
\(\cdot10^6:10=10^{6-1}=10^5\)
\(\cdot5^8:25^2=5^8:\left(5^2\right)^2=5^8:5^4=5^4\)
\(\cdot4^9:64^2=4^9:\left(4^3\right)^2=4^9:4^6=4^3\)
\(2^{25}:32^4=2^{25}:\left(2^5\right)^4=2^{25}:2^{20}=2^5\)
\(18^3:9^3=\left(18:9\right)^3=2^3\)
a. 25 . 84 = 25 . 212 = 217
b. 256 . 1253 = 512 . 59 = 521
c. 32 . 95 = 32 . 310 = 312
d. 253 . 1254 = 56 . 512 = 518
e. 42 . 52 = 202
b)
\(\left|x-3\right|=1\)
*Với \(x-3=-1\) ; ta được:
\(x-3=-1\)
<=> \(x=2\)
*Với \(x-3=1\) ; ta được:
\(x-3=1\)
<=> \(x=4\)
Vậy x=2; x=4
a) \(3^{15}:3^5=3^{15-5}=3^{10}\)
b) \(4^6:4^6=4^0\)
c) \(9^8:3^2=\left(3^2\right)^8:3^2=3^{16}:3^2=3^{14}\).
a)(3^3)5:3^2=3^15:3^2=3^13
b)(9.2)^3:9^3=9^3.2^3:9^3=9^3:9^3.2^3=1.2^3=2^3
\(10.100.10^3=10^1.10^2.10^3=10^{1+2+3}=10^6\)
\(9^n:3^{n+2}=\left(3^2\right)^n:3^{n+2}=3^{2n}:3^{n+2}=3^{2n-\left(n+2\right)}=3^{2n-n-2}=3^{n-2}\)
10.100.103=105 9n:3n+2= câu này mk cx ko bt
thông cảm nha
hok tốt
a125^5:25^3=(5^3)^5:(5^2)^3=5^15:5^6=5^9
b27^6:9^3=(3^3)^6:(3^2)^3=3^18:3^6=3^13
c 4^20:2^15=(2^2)^20:2^15=2^40:2^15=2^25
d24^n:2^2.n=24^n:(2^2)^n=24^n:4^n=(24:4)^n=6^n
e 64^4 . 16^5:4^20=(2^6)^4 . (2^4)^5 :(2^2)^20=2^24 . 2^20:2^40=2^4
g 32^4:8^6=(2^5)^4:(2^3)^6=2^20:2^18=2^2
a, \(125^5:25^3=\left(5^3\right)^5:\left(5^2\right)^3=5^{15}:5^6=5^9\)
b, \(27^6:9^3=\left(3^3\right)^6:\left(3^2\right)^3=3^{18}:3^6=3^{12}\)
c, \(4^{20}:2^{15}=\left(2^2\right)^{20}:2^{15}=2^{40}:2^{15}=2^{25}\)
d, \(24^n:2^{2.n}=2^n.12^n:2^n.2^n=12^n:2^n=2^n.6^n:2^n=6^n\)
e, \(64^4.16^5:4^{20}=4^{12}.4^{10}:4^{20}=4^{12+10-20}=4^2\)
g, \(32^4:8^6=8^4.4^4:8^4.8^2=4^4:4^2.2^2=4^2.2^2=2^4.2^2=2^6\)
\(2^{^{ }3}\cdot2^5\cdot2^3\cdot6\cdot3^9\cdot3^2\)
\(=2^3\cdot2^5\cdot2^3\cdot2\cdot3\cdot3^9\cdot3^2\)
\(=2^{3+5+3+1}\cdot3^{1+9+2}\)
\(=2^{12}\cdot3^{12}\)
\(=\left(2\cdot3\right)^{12}\)
\(=6^{12}\)
Vậy \(n=12\)