Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dựa vào lược đồ Hoóc-le sau khi phân tích, ta có:
f(x)=x3+6x2+11x+6=0
Suy ra:(x-1)(x2+5x+6)=0
Vậy x-1=0 =>x=1 (1)
Hoặc x2+5x+6=0 =>x2 -x+6x+6=0 =>x(x+1)+6(x+1)=0 =>(x+1)(x+6)=0
=> x+1=0 =>x=-1 (2)
hoặc x+6=0 =>x=-6 (3)
Từ (1),(2) và (3) =>Đa thức F(x) có 3 nghiệm là x=1;x=-1 và x=-6.
~~~~CHÚC BN HOK TỐT~~~~~
Nếu bn ko hiểu về lược đồ Hoóc-le thì lên mạng tra nha!!!!
f(x)=0<=>x3 -6x2+11x -6=0
<=>(x-1)(x-2)(x-3)=0
<=>x-1=0 hoặc x-2=0 hoặc x-3=0
<=>x=1 hoặc 2 hoặc 3
Vậy tập nghiệm của f(x) là {1;2;3}
f﴾x﴿=0<=>x 3 ‐6x 2+11x ‐6=0
<=>﴾x‐1﴿﴾x‐2﴿﴾x‐3﴿=0
<=>x‐1=0 hoặc x‐2=0 hoặc x‐3=0
<=>x=1 hoặc 2 hoặc 3
Vậy tập nghiệm của f﴾x﴿ là {1;2;3}
Đặt f(x)=0
\(\Leftrightarrow x^3+6x^2+11x-6=0\)
\(\Leftrightarrow x\in\left\{-3+\sqrt{15};-3-\sqrt{15}\right\}\)
- -6x3 + x2 + 5x - 2 = 0
=> -6x3 - 6x2 + 7x2 + 7x - 2x - 2 = 0
=> -6x2(x+1) + 7x(x+1) - 2(x+1) = 0
=> (x+1)(-6x2+7x-2) = 0
=> (x+1)(x2-\(\frac{7}{6}x+\frac{1}{3}\)) = 0
\(\Rightarrow\left(x+1\right)\left(x-\frac{1}{2}\right)\left(x-\frac{2}{3}\right)=0\)
=> x = -1 hoặc x = 1/2 hoặc x = 2/3
- 3x3 + 19x2 + 4x - 12 = 0
=> 3x3 + 3x2 + 16x2 + 16x - 12x - 12 = 0
=> (x+1)(3x2+16x-12)=0
=> (x+1)\(\left(x^2+\frac{16}{3}x-4\right)=0\)
=> (x+1) \(\left(x-\frac{2}{3}\right)\left(x+6\right)=0\)
=> x = -1 hoặcx = 2/3 hoặc x = -6
- 2x3 - 11x2 + 10x + 8 = 0
=> 2x3 - 4x2 - 7x2 + 14x - 4x + 8 = 0
=> 2x2(x - 2) - 7x(x - 2) - 4(x - 2) = 0
=> (x - 2)(2x2 - 7x - 4)=0
=> (x - 2)(\(x^2-\frac{7}{2}x-2\)) = 0
=> \(\left(x-2\right)\left(x-4\right)\left(x+\frac{1}{2}\right)=0\)
=> x = 2 hoặc x = 4 hoặc x = -1/2
1, -x3+3x2-3x+1
=1-3x.12+3.1.x2-x3
=(1-3x)3
bài này là hằng đẳng thức số 5: (a-b)3=a3-3a2b+3ab2-b2
3, ta có:
x3+8y3=x3+(2y)3=(x+2y)(x2-2xy+4y2
đây là hằng đẳng thức số 6
Ta có
1,\(3x^2+2x-1=3x^2+3x-x-1=3x\left(x+1\right)-\left(x+1\right)\)
\(\left(x+1\right)\left(3x-1\right)\)
2, \(x^3+2x^2+4x^2+8x+3x+6\)
\(=x^2\left(x+2\right)+4x\left(x+2\right)+3\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2+4x+3\right)\)
\(=\left(x+2\right)\left(x^2+x+3x+3\right)\)
\(=\left(x+2\right)\text{[}x\left(x+1\right)+3\left(x+1\right)\text{]}\)
\(=\left(x+2\right)\left(x+1\right)\left(x+3\right)\)
3,\(x^4+2x^2-3=x^4-x^2+3x^2-3\)
\(=x^2\left(x^2-1\right)+3\left(x^2-1\right)\)
\(\left(x^2-1\right)\left(x^2+3\right)=\left(x-1\right)\left(x+1\right)\left(x^2+3\right)\)
4,\(ab+ac+b^2+2bc+c^2\)
\(=a\left(b+c\right)+\left(b+c\right)^2\)
\(=\left(b+c\right)\left(a+b+c\right)\)
x3+6x2+11x+6=x3+6x2+9x+2x+6
=x.(x2+6x+9)+2.(x+3)
=x.(x2+3x+3x+9)+2.(x+3)
=x.[x.(x+3)+3.(x+3)]+2.(x+3)
=x.(x+3)(x+3)+2.(x+3)
=(x+3)[x.(x+3)+2]
=(x+3)(x2+3x+2)
=(x+3)(x2+x+2x+2)
=(x+3)[x.(x+1)+2.(x+1)]
=(x+1)(x+2)(x+3)