Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì y=f(x)y=f(x) tỉ lệ nghịch với xx theo hệ số a=12a=12 nên y=f(x)=12xy=f(x)=12x
a)
Để f(x)=4⇔12x=4⇔x=3f(x)=4⇔12x=4⇔x=3
Để f(x)=0⇔12x=0f(x)=0⇔12x=0 (vô lý). Không tồn tại xx thỏa mãn f(x)=0f(x)=0
b) Ta có:
f(−x)=12−x=−12x(1)f(−x)=12−x=−12x(1)
−f(x)=−12x(2)−f(x)=−12x(2)
Từ (1);(2)⇒f(−x)=−f(x)(1);(2)⇒f(−x)=−f(x) (đpcm)
a: xy=12
=>y=12/x
f(x)=4 nên 12/x=4
hay x=3
f(x)=0 nên 12/x=0
hay \(x\in\varnothing\)
b: \(f\left(-x\right)=-\dfrac{12}{x}\)
\(-f\left(x\right)=-\dfrac{12}{x}\)
Do đó: f(-x)=-f(x)
a, y=12/x =x/12 =1/12=x
y=12.x
ta có : f(x)=4
12.x =4
x=12:4
x=3
ta có :
f(x)=0
12/x.x=0
x=0:12/x
x=0 (vô lí)
b,f(-x)=12/-x =-12/x
-f(x)=-12/x
suy ra : f(-x)=-f(x) với mọi giá trị của x
Vì \(y=f\left(x\right)\)tỉ lệ nghịch với x theo hệ số \(a=12\)nên \(y=f\left(x\right)=\frac{12}{a}\)
a) Để \(f\left(x\right)=4\Leftrightarrow\frac{12}{x}=4\Leftrightarrow x=3\)
Để \(f\left(x\right)=0\Leftrightarrow\frac{12}{x}=0\)( vô lý ). Không tồn tại \(f\left(x\right)=0\)
b) Ta có:
\(f\left(-x\right)=\frac{12}{-x}=-\frac{12}{x}\left(1\right)\)
\(-f\left(x\right)=-\frac{12}{x}=-\frac{12}{x}\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\Rightarrow f\left(-x\right)=-f\left(x\right)\left(đpcm\right)\)