K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2018

Có: (abc≠0)

Trong đó \(\dfrac{e}{a}=\dfrac{d^2}{b^2}=t^2\)

x=0 không phải nghiệp của phương trình

\(x\ne0\) chia cả 2 vế pt cho \(x^2\) ta được:

\(\left(ax^2+\dfrac{e}{x^2}\right)+\left(bx+\dfrac{d}{x}\right)+c=0\)

\(\Leftrightarrow a\left(x^2+\dfrac{t^2}{x^2}\right)+b\left(x\pm\dfrac{t}{x}\right)+c=0\)

Đặt y=\(x\pm\dfrac{t}{x}\)

Được pt: \(ay^2+by\pm t=0\)

Tìm được y, suy ra x.

27 tháng 3 2022

Chủ câu hỏi còn sống kh ặk=))?Eoo ôi bài khó tkế,tuii kh bíc làmm đôuu nòoo,còn sống thỳy nkắnn tin vớii tuii cko vuii nèeee<333

30 tháng 8 2019

Dạng toán tích phân, khá khó f(x)= F(x) + C

30 tháng 8 2019

Mọi người không thích giúp đỡ, chỉ muốn lấy điểm, web học hiểu toán lại biến thành tựu trò chơi. 

Đúng là mất thời gian, luống công mà.

19 tháng 4 2017

\(f\left(x\right)=ax^3+bx^2+cx+d\)

a,b,c,d lập thành cấp số nhân công bội q \(\Rightarrow\left\{{}\begin{matrix}q\ne\left\{0,1\right\}\\a\ne0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}b=a.q\\c=aq^2\\d=aq^3\end{matrix}\right.\)

\(f\left(x\right)=a.x^3+a.q.x^2+a.q^2.x+a.q^3\)(1)

\(f\left(x\right)=a\left[.x^3+q.x^2+q^2.x+q^3\right]\)

\(f\left(x\right)=a.\left[.x^2\left(x+q\right)+q^2\left(.x+q\right)\right]\)

\(f\left(x\right)=a.\left(x+q\right)\left(x^2+q^2\right)\)

\(\left\{{}\begin{matrix}a,q\ne0\\f\left(x\right)=0\end{matrix}\right.\)\(\Rightarrow x=-q\) là nghiệm duy nhất

20 tháng 5 2021

Đặt \(f\left(x\right)=ax^{3\:}+bx^2+cx+d\left(a\ne0\right)\)

Nếu \(a< 0\) thì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow-\infty}f\left(x\right)=+\infty\\\lim\limits_{x\rightarrow+\infty}f\left(x\right)=-\infty\end{matrix}\right.\)

\(\Rightarrow f\left(x\right)\in\left(-\infty;+\infty\right)\), với \(x\in\left(-\infty;+\infty\right)\)

\(\Rightarrow f\left(x\right)=0\) luôn có nghiệm

Nếu \(a>0\) thì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow-\infty}f\left(x\right)=-\infty\\\lim\limits_{x\rightarrow+\infty}f\left(x\right)=+\infty\end{matrix}\right.\)

\(\Rightarrow f\left(x\right)=0\) luôn có nghiệm

NV
23 tháng 5 2019

À cái kết luận đó liên quan tới lý thuyết đồ thị của các hàm bậc 3 mà lên lớp 12 mới học nên bạn thấy hơi lạ là đúng rồi :(

Bạn cứ hiểu hàm bậc 3 p(x) là một hàm mà miền giá trị của nó luôn chạy từ \(\left(-\infty;+\infty\right)\) bất chấp các hệ số A, B, C, D bằng bao nhiêu, do đó luôn chọn được 1 giá trị x nào đó sao p(x) nằm trên miền dương.

Đồng thời khi A<0 thì ta có \(\lim\limits_{x\rightarrow+\infty}p\left(x\right)=-\infty\) nên luôn tồn tại 1 giá trị x đủ lớn làm cho p(x) âm.

Hay bạn cứ nghĩ đơn giản cho A, B, C, D các giá trị bất kì trong đó A<0, rồi cho x một giá trị lớn cỡ vài tỉ thì kiểu gì p(x) cũng âm

NV
22 tháng 5 2019

Bạn cần ghi đầy đủ bài toán, ghi thiếu thế này thì chịu thua thôi bạn ạ

20 tháng 9 2016

đề đúng không vậy