Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
17 . 4 = 17. 2 . 2 = 34 . 2 = 68
25 . 28 = 25 . 4 . 7 = 100 . 7 = 700
13 . 12 = 13 . (10 + 2) = 13 . 10 + 13 . 2 = 130 + 26 = 156
53 . 11 = 53 . (10 + 1) = 53 . 10 + 53 = 530 + 53 = 583
39 . 101 = 39 . (100 + 1) = 39 . 100 + 39 = 3900 + 39 = 3939
a)
\(\begin{array}{l}M = \frac{1}{7}.(\frac{{ - 5}}{8}) + \frac{1}{7}.(\frac{{ - 11}}{8})\\ = \frac{{ - 5}}{{56}} + \frac{{ - 11}}{{56}} = \frac{{ - 16}}{{56}} = \frac{{ - 2}}{7}\end{array}\)
b)
\(\begin{array}{l}M = \frac{1}{7}.(\frac{{ - 5}}{8}) + \frac{1}{7}.(\frac{{ - 11}}{8})\\ = \frac{1}{7}.[(\frac{{ - 5}}{8}) + (\frac{{ - 11}}{8})]\\ = \frac{1}{7}.\frac{{ - 16}}{8}\\ = \frac{1}{7}.( - 2)\\ = \frac{{ - 2}}{7}\end{array}\)
Áp dụng tính chất giao hoán,dãy tỉ số và tính chất nhân chéo: tìm a; b ; c biết 2a=3b=4c và a+b-c=22
Đa thức 3x2 – 8x +1 có các hạng tử là: 3x2 ; -8x ; 1
Ta có: 2x . 3x2 = (2.3). (x.x2) = 6x3
2x. (-8x) = [2.(-8) ]. (x.x) = -16x2
2x. 1 = 2x
Vậy 2x.(3x2 – 8x + 1) = 6x3 -16x2 + 2x
\(1.\)
Giá trị tuyệt đối của một số hữu tỉ x, kí hiệu là |x|, được xác định như sau:
\(2.\)
+ Nhân hai lũy thừa cùng cơ số :
\(a^m.a^n=a^{m+n}\)
+ Chia hai lũy thừa cùng cơ số :
\(a^m:a^n=a^{m-n}\left(a\ne0;m\ge n\right)\)
+ Lũy thừa của lũy thừa :
\(\left(x^m\right)^n=x^{m.n}\)
+ Lũy thừa của một tích :
\(\left(x.y\right)^n=x^n.y^n\)
+ Lũy thừa của một thương :
\(\left(\frac{x}{y}\right)^n=\frac{x^n}{y^n}\left(y\ne0\right)\)
5/
- Nếu đại lượng y liên hệ với đại lượng x theo công thức y=xk ( với k là hằng số khác 0 ) thì ta nói y tỉ lệ thuận với x theo hệ số tỉ lệ là k .
* Tính chất của hai đại lượng tỉ lệ thuận là :
- Nếu hai đại lượng tỉ lệ thuận với nhau thì :
- Tỉ số hai giá trị tương ứng của chúng luôn không đổi và bằng hệ số tỉ lệ .
- Tỉ số hai giá trị bất kì của đại lượng này bằng tỉ số hai giá trị tương ứng của đại lượng kia .
* Tính chất của hai đại lượng tỉ lệ nghịch là :
- Nếu hai đại lượng tỉ lệ nghịch với nhau thì :
- Tích hai giá trị tương ứng của chúng luôn không đổi và bằng hệ số tỉ lệ .
- Tỉ số hai giá trị bất kì của đại lượng này bằng nghịch đảo tỉ số hai giá trị tương ứng của đại lượng kia .