Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
a/ \(a^3.a^9=a^{3+9}=a^{12}\)
b/\(\left(a^5\right)^7=a^{5.7}=a^{35}\)
c/ \(\left(a^6\right).4.a^{12}=a^{24}.a^{12}.4=a^{24+12}.4=a^{36}.4\)
d/ \(\left(2^3\right)^5.\left(2^3\right)^3=2^{15}.2^9=2^{15+9}=2^{24}\)
e/ \(5^6:5^3+3^3.3^2\)
\(=5^3+3^5=125+243=368\)
i/ \(4.5^2-2.3^2\)
\(=2^2.5^2-2.3^2\)
\(=2^2.25-2^2.14\)
\(=2^2.\left(25-14\right)\)
\(=2^2.11\)
\(=4.11=44\)
a) \(4^{10}.2^{30}=\left(2^2\right)^{10}.2^{30}=2^{2.10}.2^{30}=2^{20}.2^{30}=2^{20+30}=2^{50}\)
b) \(9^{25}.27^4.81^3=\left(3^2\right)^{25}.\left(3^3\right)^4.\left(3^4\right)^3=3^{3.25}.3^{3.4}.3^{4.3}=3^{75}.3^{12}.3^{12}=3^{75+12+12}=3^{99}\)
c) \(25^{50}.125^5=\left(5^2\right)^{50}.\left(5^3\right)^5=5^{2.50}.5^{3.5}=5^{100}.5^{15}=5^{100+15}=5^{115}\)
d) \(64^3.4^8.16^4=\left(4^3\right)^3.4^8.\left(4^2\right)^4=4^{3.3}.4^8.4^{2.4}=4^9.4^8.4^8=4^{9+8+8}=4^{25}\)
e) \(3^8:3^6=3^{8-6}=3^2\)
f) \(2^{10}:8^3=2^{10}:\left(2^3\right)^3=2^{10}:2^{3.3}=2^{10}:2^9=2^{10-9}=2\)
g) \(12^7:6^7=\left(12:6\right)^7=2^7\)
h_ \(21^5:81^3\)kết quả là số dư nên không tính ( đề sai )
a) $125^3:25^4=(5^3)^3:(5^2)^4=5^9:5^8=5^1$
$16^4:4^2=(4^2)^4:4^2=4^8:4^2=4^6$
$27^8:9^4=(3^3)^8:(3^2)^4=3^{24}:3^8=3^{16}$
$125^5:25^3=(5^3)^5:(5^2)^3=5^{15}:5^6=5^9$
$4^{14}:5^{28}=(2^2)^{14}:5^{28}=2^{28}:5^{28}=(\dfrac{2}{5})^{28}$
b) $12^n:2^{2n}=12^n:(2^2)^n=12^n:4^n=3^n$
$64^4.16^5.4^{20}=(4^3)^4.(4^2)^5.4^{20}=4^{12}.4^{10}.4^{20}=4^{42}$
a) \(\left(x-6\right)^3=\left(x-6\right)^2\Leftrightarrow\orbr{\begin{cases}x-6=1\Leftrightarrow x=7\\x-6=0\Leftrightarrow x=6\end{cases}}\)
b) \(\left(7.x-11\right)^3=2^5.5^2+200\)
\(\Leftrightarrow\left(7.x-11\right)^3=800+200\)
\(\Leftrightarrow\left(7.x-11\right)^3=1000\)
\(\Leftrightarrow\left(7.x-11\right)^3=10^3\)
\(\Leftrightarrow7x-11=10\Leftrightarrow7x=21\Leftrightarrow x=3\)
c) \(3+2^{x-1}=24-\left[4^2-\left(2^2-1\right)\right]\)
\(\Leftrightarrow3+2^{x-1}=24-\left[4^2-3\right]\)
\(\Leftrightarrow3+2^{x-1}=24-13\)
\(\Leftrightarrow3+2^{x-1}=11\)
\(\Leftrightarrow2^{x-1}=8\Leftrightarrow2^{x-1}=2^3\Leftrightarrow x-1=3\Leftrightarrow x=4\)
a)\(3^x.3=243\Leftrightarrow3^x=81\Leftrightarrow3^x=3^4\Leftrightarrow x=4\)
b) \(2^x.16^2=1024\Leftrightarrow2^x.256=1024\Leftrightarrow2^x=4\Leftrightarrow2^x=2^2\Leftrightarrow x=2\)
c) \(64:4^x=16^8\Leftrightarrow4^x=67108864\Leftrightarrow4^x=4^{13}\Leftrightarrow x=13\)
d) \(2^x=16\Leftrightarrow2^x=2^4\Leftrightarrow x=4\)
a125^5:25^3=(5^3)^5:(5^2)^3=5^15:5^6=5^9
b27^6:9^3=(3^3)^6:(3^2)^3=3^18:3^6=3^13
c 4^20:2^15=(2^2)^20:2^15=2^40:2^15=2^25
d24^n:2^2.n=24^n:(2^2)^n=24^n:4^n=(24:4)^n=6^n
e 64^4 . 16^5:4^20=(2^6)^4 . (2^4)^5 :(2^2)^20=2^24 . 2^20:2^40=2^4
g 32^4:8^6=(2^5)^4:(2^3)^6=2^20:2^18=2^2
a, \(125^5:25^3=\left(5^3\right)^5:\left(5^2\right)^3=5^{15}:5^6=5^9\)
b, \(27^6:9^3=\left(3^3\right)^6:\left(3^2\right)^3=3^{18}:3^6=3^{12}\)
c, \(4^{20}:2^{15}=\left(2^2\right)^{20}:2^{15}=2^{40}:2^{15}=2^{25}\)
d, \(24^n:2^{2.n}=2^n.12^n:2^n.2^n=12^n:2^n=2^n.6^n:2^n=6^n\)
e, \(64^4.16^5:4^{20}=4^{12}.4^{10}:4^{20}=4^{12+10-20}=4^2\)
g, \(32^4:8^6=8^4.4^4:8^4.8^2=4^4:4^2.2^2=4^2.2^2=2^4.2^2=2^6\)
\(2^5.4=2^5.2^2=2^7\);\(5^4.25=5^4.5^2=5^6\); \(16^3.2^3=\left(2^4\right)^3.2^3=2^{12}.2^3=2^{15}\)
\(625^5:25^7=\left(5^4\right)^5:\left(5^2\right)^7=5^{20}:5^{14}=5^6\); \(25^6:125^3=\left(5^2\right)^6:\left(5^3\right)^3=5^{12}:5^9=5^3\)
\(12^4.3^4=\left(2^2.3\right)^4.3^4=2^8.3^4.3^4=2^8.3^8=6^8\); \(9^6:3^2=\left(3^2\right)^6:3^2=3^{12}:3^2=3^{10}\)
\(2^3.2^4.2=2^8\)
a.\(\hept{\begin{cases}4^8.2^{20}=2^{16}.2^{20}=2^{36}\\9^{12}.27^5.81^4=3^{24}.3^{15}.3^{12}=3^{51}\\64^3.4^5.16^2=2^{18}.2^{10}.2^8=2^{36}\end{cases}}\)
b.\(\hept{\begin{cases}25^{20}.125^4=5^{40}.5^{12}=5^{52}\\x^7x^4x^3=x^{14}\\3^6.4^6=12^6\end{cases}}\)
c.\(\hept{\begin{cases}8^4.2^3.16^2=2^{12}.2^3.2^8=2^{23}\\2^3.2^2.8^3=2^3.2^2.2^9=2^{14}\end{cases}}\)