Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 31 Viết các số và dưới dạng các lũy thừa của cơ số 0,5
Lời giải:
Ta có:
Giải : Ta có:
(0,25)8 =[(0,5)2]8=(0,5)16
(0,125)4=[(0,5)3]4=(0,5)12
1.
a) x : \(\left(\dfrac{3}{4}\right)^3\) =\(\left(\dfrac{3}{4}\right)^3\)
x = \(\left(\dfrac{3}{4}\right)^3.\left(\dfrac{3}{4}\right)^3\)
x = \(\dfrac{3}{4}^{3+3}\)
x = \(\dfrac{3}{4}^6\)
x = \(\dfrac{729}{4096}\)
b) \(\left(\dfrac{2}{5}\right)^5.x=\left(\dfrac{2}{5}\right)^8\)
x = \(\left(\dfrac{2}{5}\right)^8:\left(\dfrac{2}{5}\right)^5\)
x = \(\dfrac{2}{5}^{8-5}\)
x = \(\dfrac{2}{5}^3\)
x = \(\dfrac{8}{5}\)
2.
(0,36)\(^8\) \([\left(0,6\right)^3]^8\) = (0,6)\(^{3.8}\) = ( 0,6)\(^{24}\)
( 0,216)\(^4\) = \([\left(0,6\right)^3]^4\) = (0.6)\(^{3.4}\) = ( 0,6)\(^{12}\)
\(x:\left(\dfrac{3}{4}\right)^3=\left(\dfrac{3}{4}\right)^2\)
\(x=\left(\dfrac{3}{4}\right)^2.\left(\dfrac{3}{4}\right)^3\) <=> \(x=\left(\dfrac{3}{4}\right)^{2+3}\)
=> \(x=\left(\dfrac{3}{4}\right)^5\)
b, \(\left(\dfrac{2}{5}\right)^5.x=\left(\dfrac{2}{5}\right)^8\)
\(x=\left(\dfrac{2}{5}\right)^8:\left(\dfrac{2}{5}\right)^5\Leftrightarrow x=\left(\dfrac{2}{5}\right)^{8-5}\)
=>\(x=\left(\dfrac{2}{5}\right)^3\)
bài 2 : Với bài này ta cần áp dụng quy tắc: \(\left(x^m\right)^n=x^{m.n}\)
\(0,36^8=\left[\left(0,6\right)^2\right]^8=\left(0,6\right)^{16}\)
\(0,216^4=\left[\left(0,6\right)^3\right]^4=\left(0,6\right)^{12}\)
7)
\(\left(0,36\right)^8=\left(0,6^2\right)^8=0,6^{16}.\)
8)
a) \(\left(\frac{3}{5}\right)^n=\left(\frac{9}{25}\right)^5\)
\(\Rightarrow\left(\frac{3}{5}\right)^n=\left[\left(\frac{3}{5}\right)^2\right]^5\)
\(\Rightarrow\left(\frac{3}{5}\right)^n=\left(\frac{3}{5}\right)^{10}\)
\(\Rightarrow n=10\)
Vậy \(n=10.\)
b) \(\left(-0,25\right)^p=\frac{1}{256}\)
\(\Rightarrow\left(-0,25\right)^p=\left(\frac{1}{4}\right)^4\)
\(\Rightarrow\left(-0,25\right)^p=\left(0,25\right)^4\)
\(\Rightarrow p=4\)
Vậy \(p=4.\)
Chúc bạn học tốt!
Ta có :
(0,36)8=(0,6.0,6)8=(0,62)8=0,62.8=0,616
(0,216)4=(0,6.0,6.0,6)4=(0,63)4=0,63.4=0,612
Ta có:
\(\left(0,36\right)^8=\left(0,6.0,6\right)^8=\left(0,6^2\right)^8=0,6^{16}\)
\(\left(0,216\right)^4=\left(0,6.0,6.0,6\right)^4=\left(0,6^3\right)^4=0,6^{12}\)