Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^8+x+1\)
\(=x^8+x^7+x^6-x^7-x^6-x^5+x^5+x^4+x^3-x^4-x^3-x^2+x^2+x+1\)
\(=x^6\left(x^2+x+1\right)-x^5\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)-x^2\left(x^2+x+1\right)+x^2+x+1\)
\(=\left(x^2+x+1\right)\left(x^6-x^5+x^3-x^2+1\right)\)
\(x^4+x^2+1=x^4+1+2x^2-x^2=\left(x^2+1\right)^2-x^2=\left(x^2+1-x\right)\left(x^2+1+x\right)\)
a)x3+3x2+3x+1
=x3+3x2*1+3x*12+13
=(x+1)3
b)(x+y)2-9x2
=y2+2xy+x2-9x2
=y2-2xy+4xy-8x2
=y(y-2x)+4x(y-2x)
=(y-2x)(y+4x)
a, \(x^8+x^7+1=x^8-x^2+x^7-x+x^2+x+1=x^2\left(x^6-1\right)+x\left(x^6-1\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x^3-1\right)\left(x^3+1\right)+x\left(x^3-1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)+x\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left[x^2\left(x-1\right)\left(x^3+1\right)+x\left(x-1\right)\left(x^3+1\right)+1\right]\)
\(=\left(x^2+x+1\right)\left[\left(x^3-x^2\right)\left(x^3+1\right)+\left(x^2-x\right)\left(x^3+1\right)+1\right]\)
\(=\left(x^2+x+1\right)\left(x^6+x^3-x^5-x^2+x^5+x^2-x^4-x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)
b, \(x^8+x^4+1=x^8+2x^4+1-x^4=\left(x^4+1\right)^2-x^4=\left(x^4-x^2+1\right)\left(x^4+x^2+1\right)\)
\(=\left(x^4-x^2+1\right)\left(x^4+2x^2+1-x^2\right)=\left(x^4-x^2+1\right)\left[\left(x^2+1\right)-x^2\right]=\left(x^4-x^2+1\right)\left(x^2-x+1\right)\left(x^2+x+1\right)\)
c, \(x^5+x+1=x^5-x^2+x^2+x+1=x^2\left(x^3-1\right)+\left(x^2+x+1\right)=x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)