K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Vì cả 2 số hạng đều là số chính phương, ta phân tích nhân tử bằng cách sử dụng công thức hiệu của 2 bình phương:\(a^2-b^2=\left(a+b\right)\left(a-b\right)\) trong đó: \(a=x^2+x-1\)và \(b=x^2+2x+3\)

\(\Rightarrow\left(2x^2+3x+2\right)\left(x+4\right)\)

10 tháng 9 2020

\(\left(x^2+x-1\right)^2-\left(x^2+2x+3\right)^2\)

\(=\left(x^2+x-1+x^2+2x+3\right)\left(x^2+x-1-x^2-2x-3\right)\)

\(=\left(2x^2+3x+2\right)\left(-x-4\right)\)

14 tháng 8 2018

\(x^2+2\left(x+1\right)^2+3\left(x+2\right)^2+4\left(x+3\right)^2\)

\(=x^2+2\left(x^2+2x+1\right)+3\left(x^2+4x+4\right)+4\left(x^2+6x+9\right)\)

\(=10x^2+40x+50\)

\(=\left(x^2+10x+25\right)+\left(9x^2+30x+25\right)\)

\(=\left(x+5\right)^2+\left(3x+5\right)^2\)

14 tháng 8 2018

\(x^2+2\left(x+1\right)^2+3\left(x+2\right)^2+4\left(x+3\right)^2\)

\(=x^2+2\left(x^2+2x+1\right)+3\left(x^2+4x+4\right)+4\left(x^2+6x+9\right)\)

\(=x^2+2x^2+4x+2+3x^2+12x+12+4x^2+24x+36\)

\(=10x^2+40x+50\)

\(=\left(9x^2+30x+25\right)+\left(x^2+10x+25\right)\)

\(=\left(3x+2\right)^2+\left(x+5^2\right)\)

5 tháng 10 2017

Bài 2 :

a ) \(A=\left(a+b+c\right)^2+a^2+b^2+c^2\)

\(A=a^2+b^2+c^2+2ab+2ac+2bc+a^2+b^2+c^2\)

\(A=\left(a^2+2ab+b^2\right)+\left(a^2+2ac+c^2\right)+\left(b^2+2bc+c^2\right)\)

\(A=\left(a+b\right)^2+\left(a+c\right)^2+\left(b+c\right)^2\)

8 tháng 6 2018

Giải:

a) \(\left(x^2+x-1\right)^2-\left(x^2+2x+3\right)^2\)

\(=\left[\left(x^2+x-1\right)-\left(x^2+2x+3\right)\right]\left[\left(x^2+x-1\right)+\left(x^2+2x+3\right)\right]\)

\(=\left(x^2+x-1-x^2-2x-3\right)\left(x^2+x-1+x^2+2x+3\right)\)

\(=\left(-x-4\right)\left(2x^2+3x+2\right)\)

Vậy ...

b) \(-16+\left(x-3\right)^2\)

\(=\left(x-3\right)^2-16\)

\(=\left(x-3\right)^2-4^2\)

\(=\left(x-3-4\right)\left(x-3+4\right)\)

\(=\left(x-7\right)\left(x+1\right)\)

Vậy ...

c) \(64+16y+y^2\)

\(=8^2+2.8.y+y^2\)

\(=\left(8+y\right)^2\)

Vậy ...

2 tháng 8 2018

Ta có :

\(x^2+2\left(x+1\right)^2+3\left(x+2\right)^2+4\left(x+3\right)^2\)

\(=x^2+2\left(x^2+2+1\right)+3\left(x^2+4x+4\right)+4\left(x^2+6x+9\right)\)

\(=x^2+2x^2+4x+2+3x^2+12x+12+4x^2+24x+36\)

\(=10x^2+40x+50\)

\(=\left(x^2+10x+25\right)+\left(9x^2+30x+25\right)\)

\(=\left(x+5\right)^2+\left(3x+5\right)^2\)

Vậy biểu thức trên viết được dưới dạng tổng các bình phương của 2 biểu thức(đpcm)

\(x^2+2\left(x+1\right)^2+3\left(x+2\right)^2+4\left(x+3\right)^2\)

\(=x^2+2\left(x^2+2x+1\right)+3\left(x^2+4x+4\right)+4\left(x^2+6x+9\right)\)

\(=x^2+2x^2+4x+2+3x^2+12x+12+4x^2+24x+36\)

\(=10x^2+40x+50\)

20 tháng 6 2018

10x2+40x+50

27 tháng 7 2018

a) \(m^2-n^2=\left(m-n\right)\left(m+n\right)\)

b) \(\left(x^2+x-1\right)^2-\left(x^2+2x+3\right)^2\)

\(=\left(x^2+x-1+x^2+2x+3\right)\left(x^2+x-1-x^2-2x-3\right)\)

\(=\left(2x^2+3x+2\right)\left(-4-x\right)\)

c) \(-16+\left(x-3\right)^2=\left(x-3\right)^2-16=\left(x-3-4\right)+\left(x-3+4\right)=\left(x-7\right)\left(x+1\right)\)

d) \(64+16y+y^2\)

\(=8^2+2.8.y+y^2\)

\(=\left(8+y\right)^2\)

a,16x2-9

=42x2-32

=(4x-3)(4x+3) HĐT thứ 3

b,9a2-25b2

=32a2-52b2

=(3a-5b)(3a+5b) HĐT thứ 3

c,81-y4

=32.32-y2.y2

=(32-y2)

=(3-y)(3+y) HĐT thứ 3

d,(2x+y)2-1

=(2x+y-1)(2x+y-1) HĐT thứ 3

e,(x+y+z)2-(x-y-z)2

cái này là HĐT thứ 8 mở rộng bạn lên mạng tìm nha

7 tháng 9 2019

a) \(16x^2-9=\left(4x\right)^2-3^2=\left(4x-3\right).\left(4x+3\right)\)

b) \(9a^2-25b^4=\left(3a\right)^2-\left(5b^2\right)^2=\left(3a-5b^2\right).\left(3a+5b^2\right)\)

c) \(81-y^4=9^2-\left(y^2\right)^2=\left(9-y^2\right).\left(9+y^2\right)\)

d)\(\left(2x+y\right)^2-1=\left(2x+y\right)^2-1^2=\left(2x+y-1\right).\left(2x+y+1\right)\)

13 tháng 9 2020

\(\Leftrightarrow1-\frac{x^3}{125}\)

13 tháng 9 2020

trình bày đc k