K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1 :

a) \(4.\left(\frac{1}{32}\right)^{-2}:\left(2^3.\frac{1}{16}\right)\)

\(=2^2.32^2:\left(\frac{1}{8}.16\right)=\left(2.32\right)^2:2=64^2:2\)

\(=2048=2^{11}\)

b) \(5^2.3^5.\left(\frac{3}{5}\right)^2\)

\(=\left(5.\frac{3}{5}\right)^2.3^5=3^2.3^5=3^7\)

7 tháng 8 2019

VIẾT CÁC BIỂU THỨC DƯỚI DẠNG LUỸ THỪA CỦA 1 SỐ HỮU TỈ

\(a,4\cdot\left(\frac{1}{32}\right)^{-2}:\left(2^3\cdot\frac{1}{16}\right)\\ =4\cdot1024:\left(8\cdot\frac{1}{16}\right)\\ =4\cdot1024:\frac{1}{2}\\ =2\cdot1024\\ =2\cdot2^{10}\\ =2^{11}\)

\(b,5^2\cdot3^5\cdot\left(\frac{3}{5}\right)^2\\ =5^2\cdot\left(\frac{3}{5}\right)^2\cdot3^5\\ =3^2\cdot3^5\\ =3^7\)

2 SO SÁNH

\(a,10^{20}\text{ và }9^{10}\)

Có: \(9^{10}=\left(3^2\right)^{10}=3^{20}\)

\(\Rightarrow10^{20}>3^{20}\\ \text{hay}\text{ }10^{20}>9^{10}\)

\(b,\left(-5\right)^3\text{ và }\left(-3\right)^{50}\)

Có: \(\left(-3\right)^{50}=3^{50}\)

\(\Rightarrow\left(-5\right)^3< 3^{50}\\ \text{hay }\left(-5\right)^3< \left(-3\right)^{50}\)

\(c,64^3\text{ và }16^{12}\)

Có: \(64^3=\left(4^3\right)^3=4^9;16^{12}=\left(4^2\right)^{12}=4^{24}\)

\(\Rightarrow4^9< 4^{24}\\ hay\text{ }64^3< 16^{12}\)

\(d,\left(\frac{1}{16}\right)^{10}\text{ và }\left(\frac{1}{2}\right)^{50}\)

Có: \(\left(\frac{1}{2}\right)^{50}=\left(\frac{1}{2}\right)^{5\cdot10}=\left[\left(\frac{1}{2}\right)^5\right]^{10}=\left(\frac{1}{32}\right)^{10}\)

\(\Rightarrow\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{32}\right)^{10}\\ \text{hay }\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{2}\right)^{50}\)

20 tháng 1 2017

a)\(\frac{-5}{13}+\left(\frac{3}{5}+\frac{3}{13}-\frac{4}{10}\right)=\frac{-5}{13}-\frac{3}{5}-\frac{3}{13}+\frac{4}{10}=\left(\frac{-5}{13}-\frac{3}{13}\right)+\frac{4}{10}-\frac{3}{5}=\frac{-5-3}{13}+\left(\frac{4}{10}-\frac{6}{10}\right)=\frac{-8}{13}+\frac{-2}{10}=\frac{-80}{130}+\frac{-26}{130}=\frac{-106}{130}=\frac{-53}{65}\)

20 tháng 1 2017

tại sao bạn ra \(\frac{-5}{13}\)

21 tháng 7 2015

tính giá trị biểu thức chứ còn cái gì nữa

 

a, \(A=\frac{22}{27}\)

b,\(B=\frac{1}{57}\)

C,\(C=\frac{1}{50}\)

d, \(D=0\)

Tính giá trị biểu thức :1. \(A=\frac{\frac{2}{5}+\frac{2}{7}-\frac{2}{9}-\frac{2}{11}}{\frac{4}{5}+\frac{4}{7}-\frac{4}{9}-\frac{4}{11}}\) 2. \(B=\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.\frac{4^2}{4.5}\)3. \(C=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.\frac{5^2}{4.6}\)4. \(D=(\frac {150}{1111}+\frac{5}{75}-\frac{14}{77})(\frac{1}{5}-\frac{1}{6}-\frac{1}{30})...
Đọc tiếp

Tính giá trị biểu thức :

1. \(A=\frac{\frac{2}{5}+\frac{2}{7}-\frac{2}{9}-\frac{2}{11}}{\frac{4}{5}+\frac{4}{7}-\frac{4}{9}-\frac{4}{11}}\) 

2. \(B=\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.\frac{4^2}{4.5}\)

3. \(C=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.\frac{5^2}{4.6}\)

4. \(D=(\frac {150}{1111}+\frac{5}{75}-\frac{14}{77})(\frac{1}{5}-\frac{1}{6}-\frac{1}{30}) \)

5. Cho \(M=8\frac{2}{7}-\left(3\frac{4}{9}+3\frac{9}{7}\right);N=\left(10\frac{2}{9}+2\frac{3}{5}\right)-6\frac{2}{9}\). Tính \(P=M-N\)

6. \(E=10101\left(\frac{5}{111111}+\frac{5}{222222}-\frac{4}{3.7.11.13.37}\right)\)

7. \(F=\frac{\frac{1}{3}+\frac{1}{7}-\frac{1}{13}}{\frac{2}{3}+\frac{2}{7}-\frac{2}{13}}.\frac{\frac{3}{4}-\frac{3}{16}-\frac{3}{256}+\frac{3}{64}}{1-\frac{1}{4}+\frac{1}{16}-\frac{1}{64}}+\frac{5}{8}\)

8. \(G=\left[\frac{\left(6-4\frac{1}{2}\right):0,03}{\left(3\frac{1}{20}-2,65\right).4+\frac{2}{5}}-\frac{\left(0,3-\frac{3}{20}\right).1\frac{1}{2}}{\left(1,88+2\frac{3}{25}\right).\frac{1}{80}}\right]:\frac{49}{60}\)

9. \(H=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{4.5.6}+...+\frac{1}{98.99.100}\)

10. \(I=\frac{8}{9}.\frac{15}{16}.\frac{24}{25}.....\frac{2499}{2500}\)

11. \(k=\left(-1\frac{1}{2}\right)\left(-1\frac{1}{3}\right)\left(-1\frac{1}{4}\right)...\left(-1\frac{1}{999}\right)\)

12. \(L=1\frac{1}{3}.1\frac{1}{8}.1\frac{1}{15}...\)(98 thừa số)

13. \(M=-2+\frac{1}{-2+\frac{1}{-2+\frac{1}{-2+\frac{1}{3}}}}\)

14. \(N=\frac{155-\frac{10}{7}-\frac{5}{11}+\frac{5}{23}}{403-\frac{26}{7}-\frac{13}{11}+\frac{13}{23}}\)

15. \(P=\left(\frac{1}{4}-1\right)\left(\frac{1}{5}-1\right)...\left(\frac{1}{2000}-1\right)\left(\frac{1}{2001}-1\right)\)

16. \(Q=\left(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{2005.2006}\right):\left(\frac{1}{1004.2006}+\frac{1}{1005.2005}+...+\frac{1}{2006.1004}\right)\)

3
2 tháng 5 2018

\(1)A=\frac{\frac{2}{5}+\frac{2}{7}-\frac{2}{9}-\frac{2}{11}}{\frac{4}{5}+\frac{4}{7}-\frac{4}{9}-\frac{4}{11}}\)

\(=\frac{2\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}\right)}{4\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}\right)}\)

\(=\frac{2}{4}=\frac{1}{2}\)

\(2)B=\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.\frac{4^2}{4.5}\)

\(=\frac{1.1}{1.2}.\frac{2.2}{2.3}.\frac{3.3}{3.4}.\frac{4.4}{4.5}\)

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}\)

\(=\frac{1.2.3.4}{2.3.4.5}=\frac{1}{5}\)

\(3)C=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.\frac{5^2}{4.6}\)

\(=\frac{2.2.3.3.4.4.5.5}{1.3.2.4.3.5.4.6}\)

\(=\frac{2.5}{1.6}=\frac{2.5}{1.3.2}=\frac{5}{3}\)

\(4)D=\left(\frac{150}{1111}+\frac{5}{75}-\frac{14}{77}\right)\left(\frac{1}{5}-\frac{1}{6}-\frac{1}{30}\right)\)

\(=\left(\frac{150}{1111}+\frac{5}{75}-\frac{14}{77}\right)\left(\frac{6}{30}-\frac{5}{30}-\frac{1}{30}\right)\)

\(=\left(\frac{150}{1111}+\frac{5}{75}-\frac{14}{77}\right).0=0\)

\(5)M=8\frac{2}{7}-\left(3\frac{4}{9}+3\frac{9}{7}\right)\)               \(N=\left(10\frac{2}{9}+2\frac{3}{5}\right)-6\frac{2}{9}\)

\(=\frac{58}{7}-\left(\frac{31}{9}+\frac{30}{7}\right)\)                         \(=\left(\frac{92}{9}+\frac{13}{5}\right)-\frac{56}{9}\)

\(=\frac{58}{7}-\left(\frac{217}{63}+\frac{270}{63}\right)\)                     \(=\left(\frac{460}{45}+\frac{117}{45}\right)-\frac{280}{45}\)

\(=\frac{58}{7}-\frac{487}{63}\)                                          \(=\frac{577}{45}-\frac{280}{45}\)

\(=\frac{522}{63}-\frac{487}{63}=\frac{5}{9}\)                             \(=\frac{33}{5}\)

\(P=M-N\)

\(\Rightarrow P=\frac{5}{9}-\frac{33}{5}\)

\(\Rightarrow P=\frac{25}{45}-\frac{297}{45}\)

\(\Rightarrow P=\frac{-272}{45}\)

Vậy P = \(\frac{-272}{45}\)

\(6)E=10101\left(\frac{5}{111111}+\frac{5}{222222}-\frac{4}{3.7.11.13.37}\right)\)

\(=\frac{5}{11}+\frac{5}{22}-\left(10101.\frac{4}{111111}\right)\)

\(=\frac{10}{22}+\frac{5}{22}-\frac{4}{11}\)

\(=\frac{15}{22}-\frac{8}{22}=\frac{7}{22}\)

\(7)F=\frac{\frac{1}{3}+\frac{1}{7}-\frac{1}{13}}{\frac{2}{3}+\frac{2}{7}-\frac{2}{13}}.\frac{\frac{3}{4}-\frac{3}{16}-\frac{3}{256}+\frac{3}{64}}{1-\frac{1}{4}+\frac{1}{16}-\frac{1}{64}}+\frac{5}{8}\)

\(=\frac{1\left(\frac{1}{3}+\frac{1}{7}-\frac{1}{13}\right)}{2\left(\frac{1}{3}+\frac{1}{7}-\frac{1}{13}\right)}.\frac{3\left(\frac{1}{4}-\frac{1}{16}-\frac{1}{256}+\frac{1}{64}\right)}{1\left(1-\frac{1}{4}+\frac{1}{16}-\frac{1}{64}\right)}+\frac{5}{8}\)

\(=\frac{1}{2}.\frac{3\left(\frac{16}{64}-\frac{4}{64}+\frac{1}{64}-\frac{1}{256}\right)}{1\left(\frac{64}{64}-\frac{16}{64}+\frac{4}{64}-\frac{1}{64}\right)}+\frac{5}{8}\)

\(=\frac{1}{2}.\frac{3\left(\frac{13}{64}-\frac{1}{256}\right)}{1.\frac{51}{64}}+\frac{5}{8}\)

\(=\frac{1}{2}.\frac{3\left(\frac{52}{256}-\frac{1}{256}\right)}{\frac{51}{64}}+\frac{5}{8}\)

\(=\frac{1}{2}.\frac{3\left(\frac{51}{256}\right)}{\frac{51}{64}}+\frac{5}{8}\)

\(=\frac{1}{2}.\frac{\frac{153}{256}}{\frac{51}{64}}+\frac{5}{8}\)

\(=\frac{1}{2}.\frac{153}{256}:\frac{51}{64}+\frac{5}{8}\)

\(=\frac{1}{2}.\frac{3}{4}+\frac{5}{8}\)

\(=\frac{3}{8}+\frac{5}{8}=1\)

Xin lỗi tớ đã làm hết buổi tối mà chỉ có 7 bài mong bạn thông cảm cho mình nhé !

9 tháng 2 2018
sao không tự làm một số bài dễ đi
15 tháng 8 2019

\(A=49\frac{8}{23}-\left(5\frac{7}{32}+14\frac{8}{23}\right)\)

\(A=49\frac{8}{23}-5\frac{7}{32}+14\frac{8}{23}\)

\(A= \left(49\frac{8}{23}-14\frac{8}{23}\right)-5\frac{7}{32}\)

\(A=\left[\left(49-14\right)-\left(\frac{8}{23}-\frac{8}{23}\right)\right]-5\frac{7}{32}\)

\(A=\left[35-0\right]-5\frac{7}{32}\)

\(A=35-5\frac{7}{32}\)

\(A=\frac{953}{32}\)

\(B=71\frac{38}{45}-\left(43\frac{38}{45}-1\frac{17}{57}\right)\)

\(B=71\frac{38}{45}-\frac{36377}{855}\)

\(B=\frac{1670}{57}\)

\(C=\left(19\frac{5}{8}:\frac{7}{12}-13\frac{1}{4}:\frac{7}{12}\right):\frac{4}{5}\)

\(C=\left[\left(19\frac{5}{8}-13\frac{1}{4}\right):\frac{7}{12}\right]:\frac{4}{5}\)

\(C=\left[\frac{51}{8}:\frac{7}{12}\right]:\frac{4}{5}\)

\(C=\frac{153}{14}:\frac{4}{5}\)

\(C=\frac{765}{56}\)

\(D=\left[\left(\frac{10}{15}-\frac{2}{3}\right):\frac{1}{7}\right]\cdot0,15-\frac{1}{4}\)

\(D=\left[0:\frac{1}{7}\right]\cdot\frac{3}{20}-\frac{1}{4}\)

\(D=0\cdot\frac{3}{20}-\frac{1}{4}\)

\(D=0-\frac{1}{4}\)

\(D=-\frac{1}{4}\)

\(E=\frac{13}{30}+\frac{28}{45}\cdot2\frac{1}{2}-\left[\left(\frac{1}{2}+\frac{1}{3}\right):\frac{53}{90}\right]:\frac{50}{53}\)

\(E=\frac{13}{30}+\frac{28}{45}\cdot\frac{5}{2}-\left[\frac{5}{6}:\frac{53}{90}\right]:\frac{50}{53}\)

\(E=\frac{13}{30}+\frac{28}{45}\cdot\frac{5}{2}-\frac{75}{53}:\frac{50}{53}\)

\(E=\frac{13}{30}+\frac{14}{9}-\frac{3}{2}\)

\(\)\(E=\frac{22}{45}\)

CHUC BAN HOC TOT >.<

\(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}.....\frac{899}{30^2}\)

\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.....\frac{29.31}{30.30}=\frac{1.2.3.....29}{2.3.4.....30}.\frac{3.4.5.....31}{2.3.4.....30}\)

\(=\frac{1}{2}.\frac{31}{30}=\frac{31}{60}\)

6 tháng 4 2018

https://dethihsg.com/de-thi-hoc-sinh-gioi-phong-gddt-hoang-hoa-2014-2015/

vào đây gợi ý nhé

k mik đi

@_@

6 tháng 4 2018

đây nè

Đáp án và đề thi HSG toán 6 phòng GD&ĐT Hoằng Hóa 2014-2015

18 tháng 6 2019

#)Giải :

a) \(A=\frac{4^5.9^4-2^6.6^9}{2^{10}.3^8+6^8.20}=\frac{2^{10}.3^8-2^{10}.3^8.3}{2^{10}.3^8+2^8.3^8.2^2.5}=\frac{2^{10}.3^8-2^{10}.3^8.3}{2^{10}.3^8+2^{10}.3^8.5}=\frac{2^{10}.3^8\left(1-3\right)}{2^{10}.3^8\left(1+5\right)}=-\frac{1}{3}\)

\(a,A=\frac{2^{10}.3^8-2^{10}.3^9}{2^{10}.3^8+2^{10}.3^8.5}\)

\(=\frac{2^{10}.3^8\left(1-3\right)}{2^{10}.3^8\left(1+5\right)}=\frac{-1}{3}\)

Học tốt!!!!!!!!!!!!!