K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2016

A B C H D 1 2 3 1

 

a) \(\bigtriangleup ABH\) vuông tại H (GT)

=> \(\widehat{B}+\widehat{BAH}=90^o\) (định lí tam giác vuông) (1)

Ta có : \(\widehat{BAH}+\widehat{A_3}=90^o\) (GT) (2)

Từ (1) và (2) => \(\widehat{B}+\widehat{BAH}=\widehat{BAH}+\widehat{A_3}\)

\(\Rightarrow\widehat{B}=\widehat{A_3}\) hay \(\widehat{ABH}=\widehat{HAC}\)

b) \(\bigtriangleup DAH\) vuông tại H

=> \(\widehat{D_1}+\widehat{A_2}=90^o\) (tính chất tam giác vuông) (1)

Ta có : \(\widehat{A_1}+\widehat{A_2}+\widehat{A_3}=90^o\) (GT) (2)

Từ (1) và (2) => \(\widehat{D_1}+\widehat{A_2}=\widehat{A_1}+\widehat{A_2}+\widehat{A_3}\)

\(\Rightarrow\widehat{D_1}=\widehat{A_1}+\widehat{A_3}\)

\(\widehat{A_1}=\widehat{A_2}\) (GT)

=> \(\widehat{D_1}=\widehat{A_2}+\widehat{A_3}\)

\(\widehat{A_2}+\widehat{A_3}=\widehat{DAC}\)

=> \(\widehat{D_1}=\widehat{DAC}\) hay \(\widehat{ADC}=\widehat{DAC}\)

 

9 tháng 11 2016

mk lam cau a) cau b) tuong tu bn lam nhe

a) bn chỉ cần dựa vào 2 tam giác vuông ABC và HAC

góc ABH = 90 -C

góc HAC = 90-C

=> ABH = HAC

( bây giờ thì bn thấy wa dễ chứ)

 

25 tháng 11 2016

Giải:

Hai tam giác vuông BID và BIE có:

BI là cạnh chung

=(gt)

nên ∆BID=∆BIE.

(cạnh huyền - góc nhọn)

Suy ra ID=IE (1)

Tương tự ∆CIE=CIF(cạnh huyền góc nhọn).

Suy ra: IE =IF (2)

Từ (1)(2) suy ra: ID=IE=IF

18 tháng 9 2016

Ta có :

\(\begin{cases}\widehat{BAC}+\widehat{DAC}=180^0\\\widehat{DAC}+\widehat{ACD}+\widehat{ADC}=180^0\end{cases}\)

\(\Rightarrow\widehat{BAC}=\widehat{ACD}+\widehat{ADC}\)

\(\Rightarrow100^0=\widehat{ACD}+\widehat{ADC}\)

6 tháng 9 2020

ban tu ve hinh nha

Ta có : Góc DAB = góc CAE = 90 độ => góc DAB + góc BAC = góc CAE + góc BAc

hay góc DAC = góc EAB

Xét tam giác ADC và tam giác ABE có :

AD = AB ; AC = AE ; góc DAC = góc EAB

=> tam giác ADC = tam giác ABE => DC = BE

Vì tam giác ADC = tam giác ABE nên góc AEB = góc ACD

mà góc AKE = góc BKC (đối đỉnh) , góc AKE + góc AEB = 90 độ

=> góc BKC + góc AEB = 90 độ hay góc BKC + góc ACD = 90 độ

=> góc DC vuông góc BE

16 tháng 9 2016

ĐỀ SAI 

nếu là phân góc góc ngoài đỉnh C thì lm sao mà cắt AB tại E 

=> đề đúng pải là phân giác góc C

17 tháng 9 2016

Đề mình chép đúng đấy bạn, không sai đâu! Bạn giải cho mình được không?

5 tháng 8 2016

bạn tự vẽ hình nha

Xét tg AEC và tg AEK có:

góc ACE= góc AEK ( = 90 độ )

AE : cạnh chung

góc A= góc A2 ( AE là phân giác )

=> tg AEC= tg AEK ( cạnh huyền - góc nhọn )

=> AC= AK ( 2 cạnh tương ứng )

b) Vì AC= AK ( theo a)

=> tg ACK cân tại A

Vì trong 1 tg cân đường phân giác đồng thời là đường trung tuyến nên Ả là đường trung trực của CK

c) Xét tg AEK và tg BEK có:

góc AKE= góc BKE ( = 90 độ )

KE : cạnh chung

góc KAE = góc KBE ( đồng vị )

=> tg AEK= tg BEK ( c-g-c)

=> KA= KB

 

5 tháng 8 2016

a/ Tam giác ABE vuông tại A và tam giác BKE vuông tại K có

ABE=KBE(BE là p/g ABK)

BE là cạnh chung

Tam giác ABE=Tam giác BKE (ch-gn)

=>BA=BK hay tam giác ABK cân tại B nên đường phân giác BE đồng thòi là đường cao. Vậy BE vuông góc với AK.

b/Tam giác ABK cân tại B có B=60 độ nên là tam giác đều =>KB=KA=AB. Tương tụ ta có tam giác KBC cân tại K => KC=KA

Vậy KB=KC

c/EC>AB

Ta có EK là trung trực BC nên EB=EC, mà EB>AB do tam giác ABE vuông tại A nên EC>AB

d/ Gọi giao điểm AB và CD là N. Ta cần chứng minh N,E,K thẳng hàng để 3 đường thắng AB,EK,CD đi qua 1 điểm.

Thật vậy, tam giác AEN và tam giác KEC có

NAE=EKC (=90 độ)

EA=EK (c/mt)

EN=EC(tam giác BNC có phân giác BD đồng thời là đường cao nên đồng thời là trung trức CN)

Vậy tam giác AEN=tam giác KEC (ch-gn)

=> AEN=KEC

2 góc này ở vị trí đối đỉnh nên N,E,K thắng hàng. Vậy N,E,K thẳng hàng =>AB,EK,DC cùng đi qua 1 điểm