Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 a) có vì hai tam giác bằng nhau thì đồng dạng với nhau bởi các cặp cạnh bằng nhau nên tương ứng tỉ lệ với nhau và bằng 1
nên tỉ số đồng dạng cũng =1
b)do tam giác A'B'C'~tam giác ABC theo tỉ số k nên A'B'/AB=k
suy ra AB/A'B'=1/k nên tam giác ABC~tam giác A'B'C' theo tỉ số 1/k
Bài 2 b) do tam giác def đồng dạng với tam giác mnp nên
de/mn=df/mp=ef/np=4/6=2/3
do df=5cm nên mp=7,5cm
do np=9cm nên ef=6cm
+ Dựng ΔADE ΔABC theo tỉ số 2/3
Trên AB lấy D, trên AC lấy E sao cho
Khi đó theo định lý Ta-let đảo ta suy ra DE // BC
⇒ ΔADE ΔABC theo tỉ số 2/3.
+ Dựng ΔA’B’C’ = ΔADE
Vẽ đoạn A’B’ = AD.
Dựng góc
Trên tia B’x lấy điểm C’ sao cho B’C’ = DE.
Nối C’A’ ta được ΔA’B’C’ = ΔADE (c.g.c)
Suy ra: ΔA’B’C’ đồng dạng với ΔADE theo tỉ số:
a:
MC+MB=BC
=>BC=2MB+MB=3MB
=>\(\dfrac{CM}{CB}=\dfrac{2MB}{3MB}=\dfrac{2}{3}\)
Xét ΔCME và ΔCBA có
\(\widehat{CME}=\widehat{CBA}\)(hai góc đồng vị, ME//AB)
\(\widehat{C}\) chung
Do đó: ΔCME đồng dạng với ΔCBA
=>\(\dfrac{CM}{CB}=\dfrac{CE}{CA}=\dfrac{ME}{BA}=\dfrac{2}{3}\)
b: ΔCME đồng dạng với ΔCBA
=>\(\dfrac{C_{CME}}{C_{CBA}}=\dfrac{CM}{CB}=\dfrac{2}{3}\)
=>\(C_{CME}=\dfrac{2}{3}\cdot24=16\left(cm^2\right)\)
a) Nếu \(\Delta A'B'C' = \Delta ABC\) thì tam giác \(A'B'C'\) đồng dạng với tam giác \(ABC\). Vì hai tam giác bằng nhau có các góc tương ứng bằng nhau và các cạnh tương ứng bằng nhau.
Khi đó, \(\left\{ \begin{array}{l}\widehat A = \widehat {A'};\widehat B = \widehat {B'};\widehat C = \widehat {C'}\\\frac{{A'B'}}{{AB}} = \frac{{A'C'}}{{AC}} = \frac{{B'C'}}{{BC}} = 1\end{array} \right.\). Vậy \(\Delta A'B'C'\backsim\Delta ABC\) và tỉ số đồng dạng là 1.
b) Vì \(\Delta A'B'C'\backsim\Delta ABC\) theo tỉ số đồng dạng là \(k\) nên tỉ số đồng dạng là: \(\frac{{A'B'}}{{AB}} = \frac{{A'C'}}{{AC}} = \frac{{B'C'}}{{BC}} = k\).
Khi đó, \(\Delta ABC\backsim\Delta A'B'C'\) đồng dạng với tỉ số đồng dạng là: \(\frac{{AB}}{{A'B'}} = \frac{{AC}}{{A'C'}} = \frac{{BC}}{{B'C'}} = \frac{1}{k}\).
Vậy \(\Delta ABC\backsim\Delta A'B'C'\)theo tỉ số \(\frac{1}{k}\).
Bài 2 :
vì BE vuông góc BD nên BE là đường phân giác ngoài của tam giác ABC.
theo tính chất đường phân giác (ngoài) ta có :
AEEB=ECBCAEEB=ECBC
⇒⇒ CE=AB.BCABCE=AB.BCAB
⇒⇒ CE=AE.23CE=AE.23
⇒⇒ 3CE=(CE+AC).23CE=(CE+AC).2
⇒⇒ 3CE=2CE+2AC3CE=2CE+2AC
⇒⇒ CE=2AC=6(cm)
Bài 1: Giải
Nếu cạnh lớn nhất của tam giác đã cho là cạnh bé nhất của tam giác đồng dạng với nó thì ta có tỉ số đồng dạng đã cho là: (Gọi tạm tam giác có cạnh 12,16,18 m là tgiac 1, tgiac mới là tgiac 2)
k=Δ1Δ2=1218=23k=Δ1Δ2=1218=23
Chu vi của tam giác 1 là:
12+16+18=46(m)12+16+18=46(m)
⇒⇒ Chu vi của tam giác 2 là: 46:23=69(m)46:23=69(m)
Cạnh thứ hai của tam giác đồng dạng (2) là:
16:23=24(m)16:23=24(m)
Cạnh lớn nhất của tam giác đồng dạng (2) đó là:
69−24−18=27(m
Bài 3 tớ k bt lm
a) Ta có: \(\dfrac{AM}{AB}=\dfrac{1.5}{6}=\dfrac{1}{4}\)
\(\dfrac{AN}{AC}=\dfrac{AC-CN}{AC}=\dfrac{4-3}{4}=\dfrac{1}{4}\)
Do đó: \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\left(=\dfrac{1}{4}\right)\)
Xét ΔABC có
\(M\in AB\)(gt)
\(N\in AC\)(gt)
\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\left(=\dfrac{1}{4}\right)\)(cmt)
Do đó: MN//BC(Định lí Ta lét đảo)
b: Xét ΔAMN và ΔABC có
\(\widehat{AMN}=\widehat{ABC}\)(đồng vị, MN//BC)
góc A chung
Do đó: ΔAMN\(\sim\)ΔABC
làm sao v mn