Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Điểm E nằm giữa hai điểm C, D vì CD = 5cm > CE = 3cm.
b) Trong ba tia BD,BE,BC tia BE nằm giữa hai tia còn lại vì điểm E nằm giữa hai điểm C, D.
c) DE = 2cm.
d) D là trung điểm của đoạn thẳng AE vì AD = DE = 2cm.
e) Đoạn thẳng BD là cạnh, của các tam giác: BDA, BDE,BDC.
a) Điểm E nằm giữa hai điểm C, D vì CD = 5cm > CE = 3cm.
b) Trong ba tia BD,BE,BC tia BE nằm giữa hai tia còn lại vì điểm E nằm giữa hai điểm C, D.
a)+)Tia BC và BD đối nhau.
\(C\in BC;D\in BD\)
=>Điểm B nằm giữa 2 điểm C và D
\(\Rightarrow BC+BD=CD\)
\(\Rightarrow4+2=CD\)
=>6cm=CD
Vậy CD=6cm
b)+)Điểm M là trung điểm của đoạn thẳng CD
\(\Rightarrow CM=MD=\frac{CD}{2}=\frac{6cm}{2}=3cm\)
\(\Rightarrow CM=MD=3cm\)
+)Trên tia CD ta có:\(DB< DM\)(vì 2cm<3cm)
=>Điểm B nằm giữa 2 điểm M và D
\(\Rightarrow MB+BD=MD\)
\(\Rightarrow MB+2=3\)
\(\Rightarrow MB=3-2=1cm\)
Vậy MB=1cm
c)
d)+)Trên nửa mặt phẳng bờ là đường thẳng AC có chứa điểm D chứa các tia AC;Ax;AB;Ay;AD và n tia chung gốc A phân biệt khác
Do đó số tia là:5+n(tia)
+)Lấy 1 tia hợp với n+4 tia phânchung gốc phân biệt được n+4 góc
+)Có n+5 tia nên có:(n+4).(n+5) góc
+)Nếu tính như trên thì mỗi góc được tính 2 lần.Do đó số góc thực tế là:
\(\frac{\left(n+4\right).\left(n+5\right)}{2}\)góc
Vậy sẽ tạo ra \(\frac{\left(n+4\right).\left(n+5\right)}{2}\)góc gốc Anếu có n+5 tia chung gốc A phân biệt
Phần c bn xem lại nha
Chúc bn học tốt
Tiếp nhé
nên DB<DM (do 3cm,\(\frac{9}{2}\)cm). Suy ra điểm B nằm giữa 2 điểm D và M. Ta có:
DB+MB=DM
MB=\(\frac{9}{2}\)-3=4,5-3=1.5 (cm)
c, Theo ý a ta có điểm B nằm giữa D và C. Suy ra tia AB nằm giữa 2 tia AD và AC (1)
Ta có: \(\widehat{DAB}\) + \(\widehat{BAC}\) = \(\widehat{DAC}\) (*)
Vì tia Ay là tpg của DAB suy ra:
+Tia Ay nằm giữa 2 tia AD và AB (2)
+\(\widehat{DAy}\) = \(\widehat{yAB}\) = \(\frac{1}{2}\)\(\widehat{DAB}\)= \(\widehat{\frac{DAB}{2}}\) (**)
Vì tia Ax là tpg của BAC suy ra:
+Tia Ax nằm giữa 2 tia BA và BC (3)
+\(\widehat{BAx}\) = \(\widehat{xAC}\) = \(\frac{\widehat{BAC}}{2}\) (***)
Từ (1) (2) và (3) suy ra tia AB nằm giữa 2 tia Ax và Ay. Ta có:
\(\widehat{yAx}\) = \(\widehat{yAB}\) + \(\widehat{BAx}\) = \(\frac{\widehat{DAB}}{2}\)+ \(\frac{\widehat{BAC}}{2}\)
= \(\frac{D\widehat{AB}+\widehat{BAC}}{2}\) = \(\frac{\widehat{DAC}}{2}\)= 120o : 2 = 60o