Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình sẽ làm từ câu C nha vì câu C có liên quan đến câu cuối
c/ Xét tam giác ABF và tam giác AEC ta có :
Góc BAF = góc CAE ( AF là phân giác)
góc ABF = góc AEC ( 2 góc nt chắn cung AC)
=>tam giác ABF đồng dạng tam giác AEC (g-g)
=>\(\frac{AB}{AE}=\frac{AF}{AC}\)=>AB.AC=AE.AF
d/ Xét tam giác ABF và tam giác CFE ta có:
góc ABF = góc FEC ( 2 góc nt chắn cung AC )
góc BAF = góc FCE (2 góc nt chắn cung EB )
=> tam giác ABF đồng dạng tam giác CEF (g-g)
=>\(\frac{FB}{FE}=\frac{FA}{FC}\)=>FB.FC=FA.FE
Ta có AF.AE=AB.AC (cmt)
AF.FE=BF.CF (cmt)
=> AF.AE-AF.FE = AB.AC - BF.CF
=> AF(AE-FE) = AB.AC - BF.CF
=> \(AF^2=AB.AC-BF.CF\)
a) Xét (O) có AE là tia phân giác của góc BAC
=> ^BAE=^CAE
=> sđBE=sđCE
=> BE=CE (liên hệ giữa cung và dây cung)
=> tam giác BEC cân tại E (đpcm)
b) Tứ giác ABEC nội tiếp (O)
=> ^BAC+^BEC=180 độ (2 góc đối nhau)
<=> ^BEC=180 độ - ^BAC
Tam giác ABC có ^BAC+^ABC+^BCA=180 độ
=> =180 độ - ^BAC=^ABC+^BCA
Suy ra Góc BEC = góc ABC + góc ACB (đpcm)
c) AE là tia phân giác của góc BAC
=> ^BAE=^CAE
Hay ^BAF=^CAE
Tứ giác ABEC nội tiếp (O)
=> ^ABC=^AEC (2 góc nt chắn cung AC)
Hay ^ABF=^AEC
Xét tam giác ABF và tam giác AEC có:
^ABF=^AEC
^BAF=^CAE
=> tam giác ABF ~ tam giác AEC (g-g)
=> AB/AF=AE/AC
<=> AB.AC=AE.AF (đpcm)
Gọi H là trung điểm của AC. \(\Delta\)DAC cân tại D.
Do đó DH\(\perp\)AC và AH = \(\frac{1}{2}\)AC (1)
Vẽ AK \(\perp\)BC. Vì \(\Delta\)AKC vuông tại K và ^BCA = 300
nên AK = \(\frac{1}{2}\)AC (2)
Từ (1) và (2) suy ra AK = AH
Xét \(\Delta\)AKB và \(\Delta\)AHD có:
^AKB = ^AHD (=900)
AK = AH(gt)
^BAK = ^DAH (=500)
Do đó \(\Delta\)AKB = \(\Delta\)AHD (g.c.g)
=> AB = AD
Vậy \(\Delta\)ABD cân tại A(đpcm)
Đề thi tuyển sinh vào 10 ptnk Hồ Chí Minh 2000-2001
https://text.123doc.org/document/1812116-de-thi-vao-chuyen-toan-10.htm
Bạn vào đây nhé :D
a) \(\left(sinA+cosA\right)^2=sin^2A+cos^2A+2sinAcosA=1+2sinAcosA\)
vì tam giác \(ABC\)nhọn nên \(0^o< \widehat{A}< 90^o\)nên \(sinA>0,cosA>0\Rightarrow2sinAcosA>0\)
nên \(\left(sinA+cosA\right)^2>1\Leftrightarrow sinA+cosA>1\)do \(sinA>0,cosA>0\).
b) Kẻ đường cao \(AH\).
Đặt \(HB=x\Rightarrow HC=a-x\).
Xét tam giác \(AHB\)vuông tại \(H\): \(AH=HB.tan\widehat{ABH}=xtan45^o=x\)
Xét tam giác \(AHC\)vuông tại \(H\): \(AH=HCtan\widehat{ACH}=\left(a-x\right)tan60^o=\sqrt{3}\left(a-x\right)\)
Ta có: \(x=\sqrt{3}\left(a-x\right)\Leftrightarrow x=\frac{\sqrt{3}}{1+\sqrt{3}}a\)
\(S_{ABC}=\frac{1}{2}AH.BC=\frac{1}{2}\frac{\sqrt{3}}{1+\sqrt{3}}a.a=\frac{3-\sqrt{3}}{4}a^2\).
Lấy \(H,I,K\) trên \(AB,BC,CA\) sao cho \(DH,EI,FK\) tương ứng vuông góc với \(AB,BC,CA\). Lấy \(G\) đối xứng với \(E\) qua \(BC\). Gọi \(AG\) cắt \(DF\) tại \(J\).
Ta thấy \(\Delta BGC=\Delta BEC\sim\Delta BDA\sim\Delta AFC\). Suy ra \(\Delta BDG~\Delta BAC\sim GFC\). Từ đây \(\dfrac{DG}{AC}=\dfrac{BD}{BA}=\dfrac{AF}{AC}\Rightarrow DG=AF\). Tương tự thì \(FG=AD\). Do đó \(ADGF\) là hình bình hành. Suy ra \(J\) là trung điểm của \(DF,AG.\)
Ta có \(IK||AB\) do \(\dfrac{IB}{IC}=\dfrac{EB^2}{EC^2}=\dfrac{AF^2}{AC^2}=\dfrac{KA}{KC}\) và \(IH||AC\)
Suy ra \(\Delta DHI\sim\Delta IKF\) vì \(\widehat{DHI}=\widehat{IKF}=90^0+\widehat{BAC}\) và \(\dfrac{DH}{IK}=\dfrac{DH}{AH}=\dfrac{AK}{KF}=\dfrac{HI}{KF}\) . Do vậy:\(\widehat{DIF}=\widehat{DIH}+\widehat{HIK}+\widehat{KIF}=\widehat{DIH}+\widehat{BAC}+\widehat{DHI}=180^0-\left(90^0+\widehat{BAC}\right)+\widehat{BAC}=90^0\)Xét \(\Delta AGE\) có đường trung bình \(IJ\). Suy ra \(AE=2IJ\)
Xét \(\Delta DIF\) có \(\widehat{DIF}=90^0\), \(J\) là trung điểm của \(DF\). Suy ra \(DF=2IJ\)
Vậy \(DF=AE.\)