Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
a, Ta có:
\(H\left(x\right)=0\Rightarrow4x^2+x=0\Rightarrow x.\left(4x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\4x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{4}\end{matrix}\right.\)
Câu b bài 1 có nghiệm nha!
Câu 2:
Thay x=-1 vào đa thức ta được:
\(\left(-1\right)^{2008}-\left(-1\right)^{2007}+1=1-\left(-1\right)+1=3\)
Chúc bạn học tốt!!!
A+B+C=\(X^2\)YZ+X\(Y^2\)Z+XY\(Z^2\)=XXYZ+XYYZ+XYZZ=(X+Y+Z)XYZ
MÀ XYZ=1=>A+B+C=(X+Y+Z)*1=X+Y+Z
ta chứng minh:f[f(x)+x]=f(x)*f(x+1)
thậy vậy:
f[f(x)+x]=[f(x)+x]2+b[f(x)+x]+c
=f2(x)+2f(x)*x+x2+bf(x)+c(x)+c
=f(x)[f(x)+2x+b]+x2+bx+c
=f(x)[f(x)+2x+b]+f(x)
=f(x)[f(x)+2x+b+1]
=f(x)[(x2+b+c+2x+b+1]
=f(x)[(x+1)2+b(x+1)+c]
=f(x)*f(x+1)
Với x = 2008, đặt k = f(2008) + 2008 ta có đpcm
a:ta có: \(2x^2\ge0\)
\(\Leftrightarrow2x^2+1>0\forall x\)
vậy: H(x) vô nghiệm
Ta thay nghiệm x=-1 vào phương trình tổng quát được:
a(-1)2+b(-1) +c=0
=> a-b+c=0 hay a-b=-c (đpcm)
Áp dụng: ta thấy: a=8 b=11 c=3, a-b+c= 8-11+3=0
=> phương trình có một nghiệm là x=-1
<Mở rộng hơn nữa là phương trình dạng như trên có một nghiệm là -1 và nghiệm còn lại có dạng là -c/a>
Chứng tỏ rằng đa thức \(x^{2008}-x^{2007}+1\) vô nghiệm hay gì vậy ạ :v?
Khi x=-1 thì A=(-1)^2008-(-1)^2007+1=1+1+1=3