K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
24 tháng 8 2023

\(a,P=log\left(\dfrac{d+1}{d}\right)\\ \Leftrightarrow\dfrac{d+1}{d}=10^P\\ \Leftrightarrow1+\dfrac{1}{d}=10^P\\ \Leftrightarrow\dfrac{1}{d}=10^P-1\\ \Leftrightarrow d=\dfrac{1}{10^P-1}\)

b, Chữ số có xác suất bằng 9,7% nên ta có P = 9,7%

Ta có: \(d=\dfrac{1}{10^P-1}=\dfrac{1}{10^{9,7\%}-1}\approx4\)

Vậy chữ số 4 có xác suất bằng 9,7% được chọn.

c, Xác suất để chữ số đầu tiên là 1

\(P=log\left(\dfrac{1+1}{1}\right)\approx0,3\)

25 tháng 2 2018

Đáp án C

Cách giải:

Xét các số x = a; y = b + 1; z = c + 2; t = d + 3. Vì 1 ≤ a ≤ b ≤ c ≤ d ≤ 9 => 1 ≤ x < y < z < t ≤ 12 (*)

Và mỗi bộ 4 số (x;y;z;t) được chọn từ tập hợp 1 ; 2 ; . . . . ; 12  ta đều thu được bộ số thỏa mãn  (*). Do đó, số cách chọn 4 số trong 12 số là C 12 4   =   495  số suy ra  n ( X )   =   495

Số phần tử của không gian mẫu là   n ( Ω )   =   9 . 10 . 10 . 10 = 9000

Vậy xác suất cần tính là

12 tháng 5 2017

Chọn D

Chọn số tự nhiên có 4 chữ số bất kỳ có: (cách).

Gọi A là biến cố: “Số được chọn có dạng  a b c d ¯ , trong đó 1 ≤ abcd9” . (*)

Cách 1: Dùng tổ hợp

Nhận xét rằng với 2 số tự nhiên bất kỳ ta có: 

Do đó nếu đặt:

Từ giả thuyết  ta suy ra: 

Với mỗi tập con gồm 4 phần tử đôi một khác nhau được lấy ra từ {1,2,....,12}ta đều có được duy nhất một bộ số thoả mãn (**) và do đó tương ứng ta có duy nhất một bộ số (a,b,c,d) thoả mãn (*). Số cách chọn tập con thoả tính chất trên là tổ hợp chập 4 của 12 phần tử, do đó: 

Vậy 

Cách 2: Dùng tổ hợp lặp

Chọn số tự nhiên có 4 chữ số bất kỳ có: (cách).

Mỗi tập con có 4 phần tử được lấy từ tập {1,2,...,9}(trong đó mỗi phần tử có thể được chọn lặp lại nhiều lần) ta xác định được một thứ tự không giảm duy nhất và theo thứ tự đó ta có được một số tự nhiên có dạng   a b c d ¯ (trong đó ). Số tập con thoả tính chất trên là số tổ hợp lặp chập 4 của 9 phần tử

Do đó theo công thức tổ hợp lặp ta có:

 Vậy 

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

-         Số phần tử của không gian mẫu là: \(C_{21}^2 = 210\)

-         Số số chẵn là: 10

-         Số số lẻ là: 11

-         Để chọn được hai số có tổng là một số chẵn ta cần chọn

+ TH1: 2 số cùng là số chẵn: \(C _{10}^2= 45\) (cách)

+ TH2: 2 số cùng là số lẻ: \({}C_{11}^2 = 55\)

⇨     Xác suất để chọn được hai số có tổng là một số chẵn bằng: \(P = \frac{{45 + 55}}{{210}} = \frac{{10}}{{21}}\)

⇨     Chọn C

15 tháng 2 2021

Ta có: \(\left|K\right|=9.10^3=9000\)

Gọi A là tập hợp các số tự nhiên có 4 chữ số mà tổng các chữ số của nó chia hết cho 4.

\(A=\left\{\overline{abcd}\inℕ:\left(a+b+c+d\right)⋮4\right\}\)

Xét \(b+c+d=4k+r\left(0\le r\le3\right)\)

Nếu \(r\in\left\{0;1;2\right\}\) thì mỗi giá trị của r sẽ có 2 giá trị của a sao cho \(\left(a+b+c+d\right)⋮4\)( đó là a=4-r, a=8-r) 

Nếu \(r=3\) thì mỗi giá trị của r sẽ có 3 giá trị của a sao cho \(\left(a+b+c+d\right)⋮4\) ( đó là a=1, a=5, a=9)

Gọi \(B=\left\{\overline{bcd}\inℕ:0\le b,c,d\le9;b+c+d=4k+r;0\le r\le2\right\}\)

\(C=\left\{\overline{bcd}\inℕ:0\le b,c,d\le9;b+c+d=4k+3\right\}\)

Khi đó ta có: \(\left|A\right|=2 \left|B\right|+3\left|C\right|=2\left(\left|B\right|+\left|C\right|\right)+\left|C\right|=2.10^3+\left|C\right|\)

Xét tập hợp C với c+d =4m+n .

Nếu \(n\in\left\{0;1\right\}\) thì mỗi giá trị của n sẽ có 2 giá trị của b sao cho b+c+d=4k+3

Nếu \(n\in\left\{2;3\right\}\) thì mỗi giá trị của n sẽ có 3 giá trị của b sao cho b+c+d=4k+3

Gọi \(D=\left\{\overline{cd}\inℕ:0\le c,d\le9;c+d=4m+n;0\le n\le1\right\}\)

\(E=\left\{\overline{c\text{d}}\inℕ:0\le c,d\le9;c+d=4m+n;2\le n\le3\right\}\)

Khi đó ta có: \(\left|C\right|=2\left|D\right|+3\left|E\right|=2\left(\left|D\right|+\left|E\right|\right)+\left|E\right|=2.10^2+\left|E\right|\), với \(\left|E\right|=25+24=49\)

\(\Rightarrow\left|A\right|=2.10^3+2.10^2+49=2249\)

Gọi biến cố X : '' Số được chọn có tổng các chữ số là bội của 4''. Khi đó xác suất của biến cố là : \(P\left(X\right)=\frac{2249}{9000}\)

NV
8 tháng 12 2021

Gọi số đó là \(\overline{abcdef}\Rightarrow a+b+c+d+e+f=1+2+3+4+5+6=21\)

Mặt khác \(a+b+c=d+e+f-1\)

\(\Rightarrow\left\{{}\begin{matrix}a+b+c=10\\d+e+f=11\end{matrix}\right.\)

\(\Rightarrow\left(a;b;c\right)=\left(1;3;6\right);\left(1;4;5\right);\left(2;3;5\right)\)

Số số thỏa mãn: \(3.\left(3!.3!\right)=108\)

Xác suất: \(P=\dfrac{108}{6!}=\dfrac{3}{20}\)

2 tháng 12 2022

Số các số có `8` chữ số đôi một khác nhau là `9.A_9^7`(số)

`=> n(A) = n(\Omega) = 9.A_9^7`

Dễ thấy rằng `0 + 1 + 2 + .. + 9 = 45 \vdots 9`

Gọi `X = {0;1;..;9}`

Để số đó chia hết cho `8` thì nó phải được chọn từ các tập 

`X \\ {0;9}` , `X \\ {1;8}` , `X \\ {2;7}` , `X \\ {3;6}` , `X \\ {4;5}` 

Ta xét `2` trường hợp như sau:

Trường hợp `1`: Số đó được chọn từ tập `X \\ {0;9}` 

Xếp `8` số vào `8` vị trí có `8!`(cách)

Trường hợp `2`:Số đó được chọn từ `4` tập còn lại

Chọn `1` trong `4` tập có `C_4^1`(cách)

Xếp `8` chữ số vừa chọn `1` cách ngẫu nhiên có `8!`(cách)

Cho số `0` đứng đầu xếp `7` số còn lại có `7!` cách

Số lập được:`4(8!-7!)`(số)

Gọi `B` là biến cố chọn được số chia hết cho `9` từ tập `A`

`=> |B| = 8! + 4(8!-7!)`

Xác xuất biến cố `B`:

`P(B) = \frac{8!+4(8!-7!)}{9.A_9^7} = \frac{1}{9}`

28 tháng 6 2017

Chọn A

Vì  là tập tất cả các số tự nhiên có 5 chữ số nên 

Số phần tử của không gian mẫu là 

Gọi X là biến cố: “Chọn được một số chia hết cho 7 và chữ số hàng đơn vị bằng 1 từ tập A”.

 có tận cùng bằng 1,do đó  với   có chữ số tận cùng là 3.

Xét các trường hợp sau:

1) M là số có 4 chữ số có dạng m n p q ¯  Khi đó: 

- Với m = 1, do và q = 3 nên n  ≥ 4

+) Khi n = 4 thì p > 2 nên p ∈ {4;5;6;7;8;9}. Ta được 6 số thỏa mãn.

+) Khi n5: Có 5 cách chọn n thuộc tập hợp {5;6;7;8;9}. Khi đó p ≠ m,n,q nên p có 7 cách chọn. Ta được 35 số thỏa mãn.

- Với m2 tức là có 7 cách chọn m từ tập {2;4;5;6;7;8;9}. Khi đó  với mọi n,p thuộc tập hợp {0;1;2;4;5;6;7;8;9} và npm, do đó có 8 cách chọn n, có 7 cách chọn p. Ta được 7.8.7 = 392 số thỏa mãn

2) M là số có 5 chữ số có dạng m n p q r ¯  Khi đó:  m n p q r ¯   ≤  14285 và r = 3

Do  m n p q r ¯   ≤  14285  nên m chỉ nhận giá trị bằng 1 và n ≤ 4

- Với m=1; n = 0,2 thì p,q là các số tùy ý thuộc tập {0;2;4;5;6;7;8;9} và p ≠ q ≠ n Ta được 2.7.6 = 84 số thỏa mãn.

- Với m=1; n = 4:

+) Khi p = 0 thì q là số tùy ý thuộc tập {2;5;6;7;8;9}. Ta được 6 số thỏa mãn.

+) Khi p = 2 thì q phải thuộc tập {0;5;6;7;8}. Ta được 5 số thỏa mãn.

Vậy số phần tử của biến cố X là n(X) = 6 + 35 + 392 + 84 + 6 + 5 = 528

Xác suất để chọn được một số chia hết cho 7 và chữ số hàng đơn vị là 1 bằng

 

23 tháng 11 2016

1.8

23 tháng 11 2016

Bạn có thể nêu rõ cách giải giúp mk k

9 tháng 3 2021

Tổng 5 chữ số bất kì luôn \(\ge0+1+2+3+4=10\) => Mọi chữ số đề \(\le8\)

Nếu X không có 0 tổng 5 chữ số bất kì luôn \(\ge1+2+3+4+5=15\) => Mọi chữ số đều \(\le3\) ---> Vô lý

Vậy X luôn có 0 và không có 9.

Các X bộ số thỏa mãn: 

+) \(\left(0;1;2;3;4;8\right)\) lập được 5.5! = 600 số tự nhiên và  5! + 3.4.4! = 408 số chẵn

+) \(\left(0;1;2;3;5;7\right)\) lập được 5.5! = 600 số tự nhiên và  5! + 4.4! = 216 số chẵn 

+) \(\left(0;1;2;4;5;6\right)\) lập được 5.5! = 600 số tự nhiên và  5! + 3.4.4! = 408 số chẵn

=> Xác suất chọn được số chẵn: \(P=\dfrac{408+408+216}{600\cdot3}=\dfrac{43}{75}\)