Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Cách giải:
Xét các số x = a; y = b + 1; z = c + 2; t = d + 3. Vì 1 ≤ a ≤ b ≤ c ≤ d ≤ 9 => 1 ≤ x < y < z < t ≤ 12 (*)
Và mỗi bộ 4 số (x;y;z;t) được chọn từ tập hợp 1 ; 2 ; . . . . ; 12 ta đều thu được bộ số thỏa mãn (*). Do đó, số cách chọn 4 số trong 12 số là C 12 4 = 495 số suy ra n ( X ) = 495
Số phần tử của không gian mẫu là n ( Ω ) = 9 . 10 . 10 . 10 = 9000
Vậy xác suất cần tính là
Chọn D
Chọn số tự nhiên có 4 chữ số bất kỳ có: (cách).
Gọi A là biến cố: “Số được chọn có dạng a b c d ¯ , trong đó 1 ≤ a ≤ b ≤ c ≤ d ≤ 9” . (*)
Cách 1: Dùng tổ hợp
Nhận xét rằng với 2 số tự nhiên bất kỳ ta có:
Do đó nếu đặt:
Từ giả thuyết ta suy ra:
Với mỗi tập con gồm 4 phần tử đôi một khác nhau được lấy ra từ {1,2,....,12}ta đều có được duy nhất một bộ số thoả mãn (**) và do đó tương ứng ta có duy nhất một bộ số (a,b,c,d) thoả mãn (*). Số cách chọn tập con thoả tính chất trên là tổ hợp chập 4 của 12 phần tử, do đó:
Vậy
Cách 2: Dùng tổ hợp lặp
Chọn số tự nhiên có 4 chữ số bất kỳ có: (cách).
Mỗi tập con có 4 phần tử được lấy từ tập {1,2,...,9}(trong đó mỗi phần tử có thể được chọn lặp lại nhiều lần) ta xác định được một thứ tự không giảm duy nhất và theo thứ tự đó ta có được một số tự nhiên có dạng a b c d ¯ (trong đó ). Số tập con thoả tính chất trên là số tổ hợp lặp chập 4 của 9 phần tử
Do đó theo công thức tổ hợp lặp ta có:
Vậy
- Số phần tử của không gian mẫu là: \(C_{21}^2 = 210\)
- Số số chẵn là: 10
- Số số lẻ là: 11
- Để chọn được hai số có tổng là một số chẵn ta cần chọn
+ TH1: 2 số cùng là số chẵn: \(C _{10}^2= 45\) (cách)
+ TH2: 2 số cùng là số lẻ: \({}C_{11}^2 = 55\)
⇨ Xác suất để chọn được hai số có tổng là một số chẵn bằng: \(P = \frac{{45 + 55}}{{210}} = \frac{{10}}{{21}}\)
⇨ Chọn C
Ta có: \(\left|K\right|=9.10^3=9000\)
Gọi A là tập hợp các số tự nhiên có 4 chữ số mà tổng các chữ số của nó chia hết cho 4.
\(A=\left\{\overline{abcd}\inℕ:\left(a+b+c+d\right)⋮4\right\}\)
Xét \(b+c+d=4k+r\left(0\le r\le3\right)\)
Nếu \(r\in\left\{0;1;2\right\}\) thì mỗi giá trị của r sẽ có 2 giá trị của a sao cho \(\left(a+b+c+d\right)⋮4\)( đó là a=4-r, a=8-r)
Nếu \(r=3\) thì mỗi giá trị của r sẽ có 3 giá trị của a sao cho \(\left(a+b+c+d\right)⋮4\) ( đó là a=1, a=5, a=9)
Gọi \(B=\left\{\overline{bcd}\inℕ:0\le b,c,d\le9;b+c+d=4k+r;0\le r\le2\right\}\)
\(C=\left\{\overline{bcd}\inℕ:0\le b,c,d\le9;b+c+d=4k+3\right\}\)
Khi đó ta có: \(\left|A\right|=2 \left|B\right|+3\left|C\right|=2\left(\left|B\right|+\left|C\right|\right)+\left|C\right|=2.10^3+\left|C\right|\)
Xét tập hợp C với c+d =4m+n .
Nếu \(n\in\left\{0;1\right\}\) thì mỗi giá trị của n sẽ có 2 giá trị của b sao cho b+c+d=4k+3
Nếu \(n\in\left\{2;3\right\}\) thì mỗi giá trị của n sẽ có 3 giá trị của b sao cho b+c+d=4k+3
Gọi \(D=\left\{\overline{cd}\inℕ:0\le c,d\le9;c+d=4m+n;0\le n\le1\right\}\)
\(E=\left\{\overline{c\text{d}}\inℕ:0\le c,d\le9;c+d=4m+n;2\le n\le3\right\}\)
Khi đó ta có: \(\left|C\right|=2\left|D\right|+3\left|E\right|=2\left(\left|D\right|+\left|E\right|\right)+\left|E\right|=2.10^2+\left|E\right|\), với \(\left|E\right|=25+24=49\)
\(\Rightarrow\left|A\right|=2.10^3+2.10^2+49=2249\)
Gọi biến cố X : '' Số được chọn có tổng các chữ số là bội của 4''. Khi đó xác suất của biến cố là : \(P\left(X\right)=\frac{2249}{9000}\)
Gọi số đó là \(\overline{abcdef}\Rightarrow a+b+c+d+e+f=1+2+3+4+5+6=21\)
Mặt khác \(a+b+c=d+e+f-1\)
\(\Rightarrow\left\{{}\begin{matrix}a+b+c=10\\d+e+f=11\end{matrix}\right.\)
\(\Rightarrow\left(a;b;c\right)=\left(1;3;6\right);\left(1;4;5\right);\left(2;3;5\right)\)
Số số thỏa mãn: \(3.\left(3!.3!\right)=108\)
Xác suất: \(P=\dfrac{108}{6!}=\dfrac{3}{20}\)
Số các số có `8` chữ số đôi một khác nhau là `9.A_9^7`(số)
`=> n(A) = n(\Omega) = 9.A_9^7`
Dễ thấy rằng `0 + 1 + 2 + .. + 9 = 45 \vdots 9`
Gọi `X = {0;1;..;9}`
Để số đó chia hết cho `8` thì nó phải được chọn từ các tập
`X \\ {0;9}` , `X \\ {1;8}` , `X \\ {2;7}` , `X \\ {3;6}` , `X \\ {4;5}`
Ta xét `2` trường hợp như sau:
Trường hợp `1`: Số đó được chọn từ tập `X \\ {0;9}`
Xếp `8` số vào `8` vị trí có `8!`(cách)
Trường hợp `2`:Số đó được chọn từ `4` tập còn lại
Chọn `1` trong `4` tập có `C_4^1`(cách)
Xếp `8` chữ số vừa chọn `1` cách ngẫu nhiên có `8!`(cách)
Cho số `0` đứng đầu xếp `7` số còn lại có `7!` cách
Số lập được:`4(8!-7!)`(số)
Gọi `B` là biến cố chọn được số chia hết cho `9` từ tập `A`
`=> |B| = 8! + 4(8!-7!)`
Xác xuất biến cố `B`:
`P(B) = \frac{8!+4(8!-7!)}{9.A_9^7} = \frac{1}{9}`
Chọn A
Vì là tập tất cả các số tự nhiên có 5 chữ số nên
Số phần tử của không gian mẫu là
Gọi X là biến cố: “Chọn được một số chia hết cho 7 và chữ số hàng đơn vị bằng 1 từ tập A”.
có tận cùng bằng 1,do đó với có chữ số tận cùng là 3.
Xét các trường hợp sau:
1) M là số có 4 chữ số có dạng m n p q ¯ Khi đó:
- Với m = 1, do và q = 3 nên n ≥ 4
+) Khi n = 4 thì p > 2 nên p ∈ {4;5;6;7;8;9}. Ta được 6 số thỏa mãn.
+) Khi n ≥ 5: Có 5 cách chọn n thuộc tập hợp {5;6;7;8;9}. Khi đó p ≠ m,n,q nên p có 7 cách chọn. Ta được 35 số thỏa mãn.
- Với m ≥ 2 tức là có 7 cách chọn m từ tập {2;4;5;6;7;8;9}. Khi đó với mọi n,p thuộc tập hợp {0;1;2;4;5;6;7;8;9} và n ≠ p ≠ m, do đó có 8 cách chọn n, có 7 cách chọn p. Ta được 7.8.7 = 392 số thỏa mãn
2) M là số có 5 chữ số có dạng m n p q r ¯ Khi đó: m n p q r ¯ ≤ 14285 và r = 3
Do m n p q r ¯ ≤ 14285 nên m chỉ nhận giá trị bằng 1 và n ≤ 4
- Với m=1; n = 0,2 thì p,q là các số tùy ý thuộc tập {0;2;4;5;6;7;8;9} và p ≠ q ≠ n Ta được 2.7.6 = 84 số thỏa mãn.
- Với m=1; n = 4:
+) Khi p = 0 thì q là số tùy ý thuộc tập {2;5;6;7;8;9}. Ta được 6 số thỏa mãn.
+) Khi p = 2 thì q phải thuộc tập {0;5;6;7;8}. Ta được 5 số thỏa mãn.
Vậy số phần tử của biến cố X là n(X) = 6 + 35 + 392 + 84 + 6 + 5 = 528
Xác suất để chọn được một số chia hết cho 7 và chữ số hàng đơn vị là 1 bằng
Tổng 5 chữ số bất kì luôn \(\ge0+1+2+3+4=10\) => Mọi chữ số đề \(\le8\)
Nếu X không có 0 tổng 5 chữ số bất kì luôn \(\ge1+2+3+4+5=15\) => Mọi chữ số đều \(\le3\) ---> Vô lý
Vậy X luôn có 0 và không có 9.
Các X bộ số thỏa mãn:
+) \(\left(0;1;2;3;4;8\right)\) lập được 5.5! = 600 số tự nhiên và 5! + 3.4.4! = 408 số chẵn
+) \(\left(0;1;2;3;5;7\right)\) lập được 5.5! = 600 số tự nhiên và 5! + 4.4! = 216 số chẵn
+) \(\left(0;1;2;4;5;6\right)\) lập được 5.5! = 600 số tự nhiên và 5! + 3.4.4! = 408 số chẵn
=> Xác suất chọn được số chẵn: \(P=\dfrac{408+408+216}{600\cdot3}=\dfrac{43}{75}\)
\(a,P=log\left(\dfrac{d+1}{d}\right)\\ \Leftrightarrow\dfrac{d+1}{d}=10^P\\ \Leftrightarrow1+\dfrac{1}{d}=10^P\\ \Leftrightarrow\dfrac{1}{d}=10^P-1\\ \Leftrightarrow d=\dfrac{1}{10^P-1}\)
b, Chữ số có xác suất bằng 9,7% nên ta có P = 9,7%
Ta có: \(d=\dfrac{1}{10^P-1}=\dfrac{1}{10^{9,7\%}-1}\approx4\)
Vậy chữ số 4 có xác suất bằng 9,7% được chọn.
c, Xác suất để chữ số đầu tiên là 1
\(P=log\left(\dfrac{1+1}{1}\right)\approx0,3\)