Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(v=126\cos(5\pi t+\dfrac{\pi}{3})\)
Giá trị vận tốc này sẽ không cho kết quả đẹp, bạn kiểm tra lại xem biểu thức vận tốc đúng chưa nhé.
Mỗi câu hỏi bạn nên hỏi 1 bài thôi nhé.
Bài 1:
Áp dụng công thức độc lập thời gian: \(A^2=x^2+\dfrac{v^2}{\omega^2}\)
\(\Rightarrow A^2= 2^2+\dfrac{(4\pi\sqrt 3)^2}{\omega^2}=3^2+\dfrac{(2\pi\sqrt 7)^2}{\omega^2}\)
\(\Rightarrow \omega=2\pi\) (rad/s)
Và \(A=4\) (cm)
Tìm pha ban đầu \(\varphi\) bằng cách: \(\cos(\varphi)=\dfrac{x_1}{A}=\dfrac{1}{2}\)
Ban đầu vật đi theo chiều dương \(\rightarrow \varphi <0\)
\(\Rightarrow \varphi=-\dfrac{\pi}{3}\)
Vậy PT: \(x=4\cos(2\pi t-\dfrac{\pi}{3})\) (cm)
b)
M N 4 -4 -2 O
Biểu diễn dao động của vật bằng véc tơ quay như hình vẽ
Thời điểm đầu tiên vật qua x1 theo chiều âm ứng với véc tơ quay từ M đến N
Góc quay \(\alpha =60.2=120^0\)
Thời gian: \(i=\dfrac{120}{360}T=\dfrac{1}{3}s\)
Bài 2:
O chính là vị trí cân bằng với 2 biên là M, N
Thời gian vật đi từ O đến M là T/4
\(\Rightarrow T/4=6\Rightarrow T =24s\)
Biểu diễn dao động điều hoà bằng véc tơ quay ta có:
M N O P Q I
Vật đi từ O đến trung điểm I của ON ứng với véc tơ quay từ P đến Q
Góc quay: \(\alpha =30^0\)
Thời gian: \(t=\dfrac{30}{360}T=\dfrac{1}{12}.24=2(s)\)
Đáp án B
Giả sử x = Acos ( ωt + φ )
Thời gian giữa hai lần liên tiếp vật qua vị trí cân bằng là nửa chu kỳ nên
Quãng đường đi được trong 2s (2 chu kì) là: S=2.4A=32 =>A=4cm
Tại thời điểm t=1,5s vật qua vị trí có li độ 2 3 cm theo chiều dương
Suy ra, có thể lấy φ = - 7 π 6
Để tính vị trí của vật điều hoà tại thời điểm 1/3 giây sau khi vật có li độ x = 3cm, chúng ta cần tính giá trị của x tại thời điểm đó.
Phương trình vật dao động điều hoà đã cho là: x = 6cos(2πt - π/6) (cm)
Để tìm thời điểm 1/3s tiếp theo, ta thay t = 1/3 vào phương trình trên:
x = 6cos(2π(1/3) - π/6) = 6cos(2π/3 - π/6) = 6cos(π/2) = 6 * 0 = 0 (cm)
Vậy, tại thời điểm 1/3s tiếp theo, vật sẽ ở li độ x = 0cm.
\(v=-2\pi\sin(0,5\pi t+\dfrac{\pi}{3})(cm/s)\)
\(\Rightarrow A = \dfrac{2\pi}{0,5\pi}=4(cm)\)
\(\varphi=\dfrac{\pi}{3}-\dfrac{\pi}{2}=-\dfrac{\pi}{6}(rad)\) (do li độ trễ pha \(\dfrac{\pi}{2}\) so với vận tốc)
\(\Rightarrow x = 4\cos(0,5\pi t-\dfrac{\pi}{6})(cm)\)
4 -4 2 M N
Thời điểm đầu tiên vật qua li độ 2cm theo chiều dương ứng với véc tơ quay từ M đến N
\(\Rightarrow t = \dfrac{30+3.90+30}{360}.4=\dfrac{11}{3}(s)\)