Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a(a−x)2+b(b−x)2 (1)
=(a+b)x2−2x(a2+b2)+a3+b3
+) a+b=0⇒pt(1)có một nghiệm⇒|a|=|b|
+) a+b≠0
Xét Δ'=a4+2a2b2+b4−a4−ab3−a3b−b4
=2a2b2−ab3−a3b=ab(a−b)2
PT(1) có 1 nghiệm khi và chỉ khi : Δ'=0⇒a−b=0⇒|a|=|b|
Thực hiện khai triển , PT đã cho tương đương với
\(\left(a+b\right)x^2-2x\left(a^2+b^2\right)+\left(a^3+b^3\right)=0\left(^∗\right)\)
Nếu \(a+b=0\) thì
\(a^2+b^2\ne0\) với mọi a , b \(\ne0\) . PT (*) có nghiệm duy nhất \(x=\frac{a^3+b^3}{2\left(a^2+b^2\right)}\) ( thỏa mãn yêu cầu )
\(a+b=0\Rightarrow a=-b\Rightarrow\left|a\right|=\left|b\right|\left(1\right)\)
Nếu \(a+b\ne0\)
PT (*) là PT bậc 2 ẩn x có nghiệm duy nhất khi mà
\(\Delta'=\left(a^2+b^2\right)^2-\left(a+b\right)\left(a^3+b^3\right)=0\)
\(\Leftrightarrow2a^2b^2-ab^3-a^3b=0\)
\(\Leftrightarrow-ab\left(a-b\right)^2=0\)
Vì \(a,b\ne0\Rightarrow ab\ne0\)
\(\Rightarrow\left(a-b\right)^2=0\Rightarrow a=b\Rightarrow\left|a\right|=\left|b\right|\left(2\right)\)
Từ (1) và (2) ta có đpcm
Chúc bạn học tốt !!!
Xét \(\Delta_1=a^2-b;\Delta_2=b^2-a\)
ta có: \(\Delta_1+\Delta_2=a^2-b+b^2-a=\left(a^2+b^2\right)-\left(a+b\right)\)
\(\ge\frac{\left(a+b\right)^2}{2}-\left(a+b\right)=\left(a+b\right)\left(a+b-2\right)\)
Vì \(a+b\ge2\) nên \(\left(a+b\right)\left(a+b-2\right)\ge0\)
=> \(\Delta_1+\Delta_2\ge0\)
=> Trong 2 số \(\Delta_1;\Delta_2\) có ít nhất 1 số không âm
=> Trong hai phương trình: \(\left(x^2+2ax+b\right);\left(x^2+2bx+a\right)\) có ít nhất 1 phương trình có nghiệm
=> \(\left(x^2+2ax+b\right)\left(x^2+2bx+a\right)\) luôn có nghiệm
Trình bày khác cô Chi chút ạ =))
Xét \(\Delta_1=a^2-b;\Delta_2=b^2-a\)
Ta có:\(\Delta_1+\Delta_2=a^2-a+b^2-b\ge a^2-a+b^2-b+2-a-b\)
\(=a^2-2a+1+b^2-2b+1=\left(a-1\right)^2+\left(b-1\right)^2\ge0\)
Khi đó ít nhất một trong \(\Delta_1;\Delta_2\) có nghiệm => đpcm
Xin phép tách ra để bài giải trở nên đẹp hơn :))
Do X1 ; X2 là 2 nghiệm của phương trình \(5x^2-3x-1\) nên theo định lý Viete ta có:
\(X_1X_2=-\frac{1}{5};X_1+X_2=\frac{3}{5}\) ( 1 )
Khi đó ta có:
\(A=\frac{X_1}{X_2}+\frac{X_1}{X_2+1}+\frac{X_2}{X_1}+\frac{X_2}{X_1+1}-\left(\frac{1}{X_1}+\frac{1}{X_2}\right)\) ( theo mình ở đây là +,không biết có đúng ko :V )
\(=\frac{X_1^2+X_2^2}{X_1X_2}+\frac{X_1^2+X_1+X_2^2+X_2}{X_1X_2+X_1+X_2+1}-\frac{X_2+X_1}{X_1X_2}\)
\(=\frac{\left(X_1+X_2\right)^2-2X_1X_2-\left(X_1+X_2\right)}{X_1X_2}+\frac{\left(X_1+X_2\right)^2-2X_1X_2+\left(X_1+X_2\right)}{\left(X_1+X_2\right)+X_1X_2+1}\)
Bạn thay ( 1 ) vào là ra nhé :)