K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2019

#)Giải :

a) Câu trc của bn mk có giải rùi, thắc mắc vô Thống kê hđ của mk xem lại nhé !

b) Để \(P>0\Rightarrow\frac{x-1}{\sqrt{x}}>0\Rightarrow x-1>0\left(\sqrt{x}>0\right)\Rightarrow x>1\)

c) Bó tay @@

22 tháng 7 2019

\(a,P=\left(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{x-\sqrt{x}}\right):\left(\frac{1}{\sqrt{x}+1}+\frac{2}{x-1}\right)\)

\(=\left(\frac{x}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\frac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\frac{2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\frac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\frac{\sqrt{x}-1+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{\left(x-1\right)\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{x-1}{\sqrt{x}}\)

Vậy với \(x>0;x\ne1\)thì \(P=\frac{x-1}{\sqrt{x}}\)

\(b,\)Để \(P>0\Leftrightarrow\frac{x-1}{\sqrt{x}}>0\Leftrightarrow x-1>0\Leftrightarrow x>1\left(\sqrt{x}>0\right)\)

22 tháng 7 2019

#)Giải :

\(P=\left(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{x-\sqrt{x}}\right)\div\left(\frac{1}{\sqrt{x}+1}+\frac{2}{x-1}\right)\)

\(P=\left(\frac{x}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\div\left(\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)

\(P=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\div\frac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}}\div\frac{1}{\sqrt{x}-1}=\frac{x-1}{\sqrt{x}}\)

23 tháng 5 2021

a, Với \(x>0;x\ne1\)

 \(P=\left(\frac{\sqrt{x}}{2}-\frac{1}{2\sqrt{x}}\right)^2\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{\sqrt{x}+1}{\sqrt{x}-1}\right)\)

\(=\left(\frac{x-1}{2\sqrt{x}}\right)^2\left(\frac{x-2\sqrt{x}+1-x-2\sqrt{x}-1}{x-1}\right)\)

\(=\frac{x^2-2x+1}{4x}.\frac{-4\sqrt{x}}{x-1}=\frac{1-x}{\sqrt{x}}\)

Thay x = 4 => \(\sqrt{x}=2\)vào P ta được : 

\(\frac{1-4}{2}=-\frac{3}{2}\)

c, Ta có : \(P< 0\Rightarrow\frac{1-x}{\sqrt{x}}< 0\Rightarrow1-x< 0\)vì \(\sqrt{x}>0\)

\(\Rightarrow-x< -1\Leftrightarrow x>1\)

28 tháng 7 2019

\(A=\frac{\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}-3}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(A=\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(A=\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(A=\frac{4\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(A=\frac{4\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(A=\frac{4}{x-1}\)

b) \(\frac{4}{x-1}=7\)

\(\Leftrightarrow4=7.\left(x-1\right)\)

\(\Leftrightarrow\frac{4}{7}=x-1\)

\(\Leftrightarrow\frac{4}{7}+1=x\)

\(\Leftrightarrow\frac{11}{7}=x\)

\(\Rightarrow x=\frac{11}{7}\)

23 tháng 6 2018

a) Ta có: \(A=\frac{x+2\sqrt{x}+1}{\sqrt{x}+1}.\left(1-\frac{x-\sqrt{x}}{\sqrt{x}-1}\right)\)

\(=\frac{x+2\sqrt{x}+1}{\sqrt{x}+1}.\frac{\sqrt{2x}-x-1}{\sqrt{x}-1}\)

\(=\frac{x+2\sqrt{x}+1}{\sqrt{x}+1}.\frac{1-2\sqrt{x}+x}{1-\sqrt{x}}\)

\(=\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}+1}.\frac{\left(1-\sqrt{x}\right)^2}{1-\sqrt{x}}\)

\(=\left(\sqrt{x}+1\right)\left(1-\sqrt{x}\right)\)

\(=1^2-\left(\sqrt{x}\right)^2=1-x\).

Vậy \(A=1-x\).

b) Ta có: \(A=1-x\)

Để \(A>0\)\(\Rightarrow1-x>0\Rightarrow1-0>x\Rightarrow1>x\Rightarrow x< 1.\)

Vậy để A > 0 thì x < 1.

Chúc bn hc tốt!

3 tháng 10 2020

a) \(M=\frac{x+1+\sqrt{x}}{x+1}:\left(\frac{1}{\sqrt{x}-1}-\frac{2\sqrt{x}}{\sqrt{x}\left(x+1\right)-\left(x+1\right)}\right)\)

\(=\frac{x+\sqrt{x}+1}{x+1}:\left(\frac{1}{\sqrt{x}-1}-\frac{2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\frac{x+\sqrt{x}+1}{x+1}:\frac{x+1-2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}-1\right)}\)\(=\frac{x+\sqrt{x}+1}{x+1}.\frac{\left(x+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)^2}=\frac{x+\sqrt{x}+1}{\sqrt{x}-1}\)

b) \(M>3\Rightarrow\frac{x+\sqrt{x}+1}{\sqrt{x}-1}>3\Leftrightarrow\frac{x+\sqrt{x}+1}{\sqrt{x}-1}-3>0\)

\(\Leftrightarrow\frac{x+\sqrt{x}+1-3\left(\sqrt{x}-1\right)}{\sqrt{x}-1}>0\Leftrightarrow\frac{x+\sqrt{x}+1-3\sqrt{x}+3}{\sqrt{x}-1}>0\)\(\Leftrightarrow\frac{x-2\sqrt{x}+4}{\sqrt{x}-1}>0\)

Ta có: \(x-2\sqrt{x}+4=x-2\sqrt{x}+1+3=\left(\sqrt{x}-1\right)+3>0\)\(\Rightarrow\sqrt{x}-1>0\Leftrightarrow\sqrt{x}>1\Leftrightarrow x>1\)

Vậy x>1

3 tháng 10 2020

c) \(M=7\Rightarrow\frac{x+\sqrt{x}+1}{\sqrt{x}-1}=7\Rightarrow x+\sqrt{x}+1=7\left(\sqrt{x}-1\right)\)

\(\Leftrightarrow x+\sqrt{x}+1=7\sqrt{x}-7\Leftrightarrow x-6\sqrt{x}+8=0\)\(\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-2=0\\\sqrt{x}-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=2\\\sqrt{x}=4\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=4\\x=16\end{cases}\left(tm\right)}}\)

Vậy \(x\in\text{{}4;16\)

5 tháng 2 2022

Trả lời:

a, \(B=\left(\frac{x+\sqrt{x}-1}{x\sqrt{x}-1}-\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\right):\frac{1}{\sqrt{x}-1}\left(ĐK:x>0;x\ne1\right)\)

\(=\left(\frac{x+\sqrt{x}-1}{\left(\sqrt{x}\right)^3-1}-\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\right):\frac{1}{\sqrt{x}-1}\)

\(=\left(\frac{x+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\right).\left(\sqrt{x}-1\right)\)

\(=\left(\frac{x+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right).\left(\sqrt{x}-1\right)\)

\(=\frac{x+\sqrt{x}-1-\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\left(\sqrt{x}-1\right)\)

\(=\frac{x+\sqrt{x}-1-\left(x-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\left(\sqrt{x}-1\right)\)

\(=\frac{x+\sqrt{x}-1-x+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\left(\sqrt{x}-1\right)\)

\(=\frac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\left(\sqrt{x}-1\right)=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)

b, \(B< \frac{1}{3}\Leftrightarrow\frac{\sqrt{x}}{x+\sqrt{x}+1}< \frac{1}{3}\)

\(\Leftrightarrow\frac{\sqrt{x}}{x+\sqrt{x}+1}-\frac{1}{3}< 0\)

\(\Leftrightarrow\frac{3\sqrt{x}}{3\left(x+\sqrt{x}+1\right)}-\frac{x+\sqrt{x}+1}{3\left(x+\sqrt{x}+1\right)}< 0\)

\(\Leftrightarrow\frac{3\sqrt{x}-x-\sqrt{x}-1}{3\left(x+\sqrt{x}+1\right)}< 0\)

\(\Leftrightarrow\frac{-x+2\sqrt{x}-1}{3\left(x+\sqrt{x}+1\right)}< 0\)

\(\Leftrightarrow\frac{-\left(x-2\sqrt{x}+1\right)}{3\left(x+\sqrt{x}+1\right)}< 0\)

\(\Leftrightarrow\frac{-\left(\sqrt{x}-1\right)^2}{3\left(x+\sqrt{x}+1\right)}< 0\)

Vì  \(-\left(\sqrt{x}-1\right)^2< 0\) với mọi \(x>0;x\ne1\)

      \(3\left(x+\sqrt{x}+1\right)>0\) với mọi  \(x>0;x\ne1\)

\(\Rightarrow\frac{-\left(\sqrt{x}-1\right)^2}{3\left(x+\sqrt{x}+1\right)}< 0\)  luôn đúng với mọi \(x>0;x\ne1\)

Vậy \(B< \frac{1}{3}\)

c, \(B=\frac{1}{2\sqrt{x}+1}\Leftrightarrow\frac{\sqrt{x}}{x+\sqrt{x}+1}=\frac{1}{2\sqrt{x}+1}\)

\(\Leftrightarrow\sqrt{x}\left(2\sqrt{x}+1\right)=x+\sqrt{x}+1\)

\(\Leftrightarrow2x+\sqrt{x}=x+\sqrt{x}+1\)

\(\Leftrightarrow x=1\) (tm)

Vậy x = 1 là giá trị cần tìm 

Bài 1 : 

a )\(A=\frac{3-\sqrt{3}}{\sqrt{3}-1}+\frac{\sqrt{35}-\sqrt{15}}{\sqrt{5}}-\sqrt{28}\)

\(A=\frac{\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}+\frac{\sqrt{5}\left(\sqrt{7}-\sqrt{3}\right)}{\sqrt{5}}-\sqrt{28}\)

\(A=\sqrt{3}+\sqrt{7}-\sqrt{3}-\sqrt{28}\)

\(A=\sqrt{7}-\sqrt{28}\)

\(A=\sqrt{7}-2\sqrt{7}=-\sqrt{7}\)

Vậy \(A=-\sqrt{7}\)

b)\(B=\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}:\frac{\sqrt{a}+\sqrt{b}}{a-b}\left(a,b>0;a\ne b\right)\)

\(B=\frac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}:\frac{\sqrt{a}+\sqrt{b}}{a-b}\)

\(B=\left(\sqrt{a}+\sqrt{b}\right).\frac{a-b}{\sqrt{a}+\sqrt{b}}\)

\(B=a-b\)

Vậy \(B=a-b\left(a,b>0;a\ne b\right)\)

_Minh ngụy_

Bài 2 :

a )\(B=\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{1-\sqrt{x}}{x+\sqrt{x}}\left(x>0\right)\)

\(B=\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(B=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(B=\frac{x-1+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(B=\frac{x-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(B=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(B=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)

Vậy \(B=\frac{\sqrt{x}-1}{\sqrt{x}+1}\left(x>0\right)\)

b) \(B=\frac{\sqrt{x}-1}{\sqrt{x}+1}\left(x>0\right)\)

Ta có : \(B>0\Leftrightarrow\frac{\sqrt{x}-1}{\sqrt{x}+1}>0\)

Vì : \(\sqrt{x}\ge0\forall x\Rightarrow\)để \(B>O\)cần \(\sqrt{x}-1>0\Leftrightarrow\sqrt{x}>1\Leftrightarrow x>1\)( thỏa mãn \(x>0\))

Vậy \(x>1\)thì \(B>0\)

_Minh ngụy_