Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(\frac{1}{2}\) - ( \(\frac{1}{3}\) + \(\frac{1}{4}\) ) < x < \(\frac{1}{48}\) - ( \(\frac{1}{16}\) - \(\frac{1}{6}\) )
\(\frac{1}{2}\) - \(\frac{7}{12}\) < x < \(\frac{1}{48}\) - \(\frac{-5}{48}\)
\(\frac{-1}{12}\) < x < \(\frac{1}{8}\)
Đề bài yêu cầu tìm x thuộc tập hợp gì bạn ơi. Bạn viết thiếu rồi .
a) \(\frac{4}{9}x+\frac{2}{5}-\frac{1}{3}x=\frac{2}{9}-\frac{1}{4}x\)
\(\Leftrightarrow\frac{13}{36}x=-\frac{8}{45}\)
\(\Rightarrow x=-\frac{32}{65}\)
b) \(\left(\frac{2}{3}x-\frac{1}{2}\right).\left(-\frac{2}{3}\right)+\frac{1}{5}=-\frac{3}{4}\)
\(\Leftrightarrow-\frac{4}{9}x+\frac{1}{3}+\frac{1}{5}=-\frac{3}{4}\)
\(\Leftrightarrow\frac{4}{9}x=\frac{77}{60}\)
\(\Rightarrow x=\frac{231}{80}\)
a) \(\frac{4}{9}x+\frac{2}{5}-\frac{1}{3}x=\frac{2}{9}-\frac{1}{4}x\)
=> \(\frac{4}{9}x-\frac{1}{3}x+\frac{2}{5}-\frac{2}{9}+\frac{1}{4}x=0\)
=> \(\left(\frac{4}{9}x-\frac{1}{3}x+\frac{1}{4}x\right)+\left(\frac{2}{5}-\frac{2}{9}\right)=0\)
=> \(\frac{13}{36}x+\frac{8}{45}=0\)
=> \(\frac{13}{36}x=-\frac{8}{45}\)
=> \(x=-\frac{32}{65}\)
b) \(\left(\frac{2}{3}x-\frac{1}{2}\right)\cdot\frac{-2}{3}+\frac{1}{5}=\frac{-3}{4}\)
=> \(\left(\frac{2}{3}x-\frac{1}{2}\right)\cdot\frac{-2}{3}=-\frac{19}{20}\)
=> \(\frac{2}{3}x-\frac{1}{2}=\left(-\frac{19}{20}\right):\left(-\frac{2}{3}\right)=\left(-\frac{19}{20}\right)\cdot\left(-\frac{3}{2}\right)=\frac{57}{40}\)
=> \(\frac{2}{3}x=\frac{57}{40}+\frac{1}{2}=\frac{77}{40}\)
=> \(x=\frac{77}{40}:\frac{2}{3}=\frac{77}{40}\cdot\frac{3}{2}=\frac{231}{80}\)
Bài 1
\(a,\left|x\right|=-\left|-\frac{5}{7}\right|=>x\in\varnothing\)
\(b,\left|x+4,3\right|-\left|-2,8\right|=0\)
\(=>\left|x+4,3\right|-2,8=0\)
\(=>\left|x+4,3\right|=0+2,8=2,8\)
\(=>x+4,3=\pm2,8\)
\(=>\hept{\begin{cases}x+4,3=2,8\\x+4,3=-2,8\end{cases}=>\hept{\begin{cases}x=-1,5\\x=-7,1\end{cases}}}\)
\(c,\left|x\right|+x=\frac{2}{3}\)
\(=>\hept{\begin{cases}x+x=\frac{2}{3}\\-x+x=\frac{2}{3}\end{cases}}=>\hept{\begin{cases}x=\frac{1}{3}\\x=-\frac{1}{3}\end{cases}}\)
a, \(\frac{-5}{9}.\left(\frac{3}{10}-\frac{2}{5}\right)\)
\(=\frac{-5}{9}.\left(\frac{3}{10}-\frac{4}{10}\right)\)
\(=\frac{-5}{9}.\frac{-1}{10}\)
\(=\frac{5}{90}\)
\(=\frac{1}{18}\)
b,\(\frac{2}{3}+\frac{-1}{3}+\frac{7}{15}\)
\(=\frac{10}{15}-\frac{5}{15}+\frac{7}{15}\)
\(=\frac{12}{15}\)
\(=\frac{4}{5}\)
c, \(\frac{3}{8}.3\frac{1}{3}\)
\(=\frac{3}{8}.\frac{10}{3}\)
\(=\frac{10}{8}\)
\(=\frac{5}{4}\)
d, \(\frac{-3}{5}+0,8.\left(-7\frac{1}{2}\right)\)
\(=\frac{-3}{5}+\frac{4}{5}.\frac{-15}{2}\)
\(=\frac{-3}{5}+\frac{-60}{10}\)
\(=\frac{-3}{5}+\frac{-30}{5}\)
\(=\frac{-33}{5}\)
e, \(\frac{2}{5}.8\frac{1}{3}+1\frac{2}{3}.\frac{2}{5}\)
\(=\frac{2}{5}.\left(8\frac{1}{3}+1\frac{2}{3}\right)\)
\(=\frac{2}{5}.10\)
\(=4\)
f, \(\frac{3}{7}.19\frac{1}{3}-\frac{3}{7}.33\frac{1}{3}\)
\(=\frac{3}{7}.\left(19\frac{1}{3}-33\frac{1}{3}\right)\)
\(=\frac{3}{7}.-14\)
\(=-6\)
~Study well~
#KSJ
Bài 2
| x - \(\frac{1}{3}\)| + \(\frac{4}{5}\)= | ( -3,2) + \(\frac{2}{5}\)|
=> | x - \(\frac{1}{3}\)| + \(\frac{4}{5}\)= | -2,8|
=> | x - \(\frac{1}{3}\)| + \(\frac{4}{5}\)= -2,8
=> | x - \(\frac{1}{3}\)| = -2,8 - \(\frac{4}{5}\)
=> | x - \(\frac{1}{3}\)| = - 3,6
=> x - \(\frac{1}{3}\)= -3,6
=> x = -3,6 + \(\frac{1}{3}\)
=> x = \(\frac{-49}{15}\)
Bài 3 :
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a_1-1}{9}=\frac{a_2-2}{8}=...=\frac{a_9-9}{1}=\frac{a_1-1+a_2-2+...+a_9-9}{9+8+...+1}\)
\(=\frac{\left[a_1+a_2+...+a_9\right]-\left[1+2+...+9\right]}{9+8+...+1}=\frac{90-45}{45}=1\)
Ta có : \(\frac{a_1-1}{9}=1\Rightarrow a_1=10\)
Tương tự : \(a_1=a_2=....=a_9=10\)
a) \(\frac{5}{9}:\left(\frac{5}{12}-\frac{1}{11}\right)-\frac{5}{9}:\left(\frac{-1}{5}-\frac{2}{3}\right)\)
= \(\frac{5}{9}:\left(\frac{55}{132}-\frac{12}{132}\right)-\frac{5}{9}:\left(\frac{-3}{15}-\frac{10}{15}\right)\)
= \(\frac{5}{9}:\frac{43}{132}-\frac{5}{9}:\frac{-13}{15}\)
= \(\frac{5}{9}\times\frac{132}{43}-\frac{5}{9}\times\frac{-15}{13}\)
=\(\frac{5}{9}\times\left(\frac{132}{43}-\frac{-15}{13}\right)\)
=\(\frac{5}{9}\times\frac{2361}{559}\)( Đến đây bạn tự quy đồng mẫu nha)
=\(\frac{3935}{1677}\)
Bài giải
Ta có : \(\frac{1}{2^2}< \frac{1}{1\cdot2}\) ; \(\frac{1}{3^2}< \frac{1}{2\cdot3}\) ; ..... ; \(\frac{1}{9^2}< \frac{1}{8\cdot9}\)
\(\Rightarrow A=\text{ }\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+..+\frac{1}{8\cdot9}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}\)
\(=1-\frac{1}{9}=\frac{8}{9}\) \(^{\left(1\right)}\)
Ta có : \(\frac{1}{2^2}>\frac{1}{2\cdot3}\) ; \(\frac{1}{3^2}>\frac{1}{3\cdot4}\) ; ..... ; \(\frac{1}{9^2}>\frac{1}{9\cdot10}\)
\(\Rightarrow A=\text{ }\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}>\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{9\cdot10}=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\) \(^{\left(2\right)}\)
Từ \(^{\left(1\right)}\) và \(^2\)
\(\Rightarrow\text{ }\frac{2}{5}< A< \frac{8}{9}\) \(\left(ĐPCM\right)\)
Ta có : \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}\)
\(=\frac{1}{2\times2}+\frac{1}{3\times3}+\frac{1}{4\times4}+...+\frac{1}{9\times9}< \frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{8\times9}\)
\(=\frac{2-1}{1\times2}+\frac{3-2}{2\times3}+\frac{4-3}{3\times4}+...+\frac{9-8}{8\times9}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\)
\(=1-\frac{1}{9}=\frac{8}{9}\)
\(\Rightarrow A< \frac{8}{9}\left(1\right)\)
Ta có: \(A=\frac{1}{2\times2}+\frac{1}{3\times3}+\frac{1}{4\times4}+...+\frac{1}{9\times9}>\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{9\times10}\)
\(=\frac{3-2}{2\times3}+\frac{4-3}{3\times4}+\frac{5-4}{4\times5}+...+\frac{10-9}{9\times10}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)
\(\Rightarrow A>\frac{2}{5}\left(2\right)\)
Từ (1) và (2) --> \(\frac{2}{5}< A< \frac{8}{9}\left(đpcm\right)\)
Các bạn nhớ k đúng mình nha (nếu đúng)