Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)
\(\Rightarrow\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{25}\)
\(\Rightarrow\frac{x^2}{4}=\frac{3y^2}{27}=\frac{z^2}{25}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{4}=\frac{3y^2}{27}=\frac{z^2}{25}=\frac{x^2+3y^2-z^2}{4+27-25}=\frac{30}{6}=5\)
\(\Rightarrow\)x2=20
y2=45
z2=125
Áp dụng .......................................
ta được: x/2=y/3=z/5=(x2+3y2-z2)/(22+3*32-52)=30/6=5
Vậy: x=10
y=15
z=25
\(\frac{x}{y}=\frac{4}{9}\Rightarrow x=\frac{4y}{9}\) thay vào \(3x-2y=12\)
\(\Rightarrow3.\frac{4y}{9}-2y=12\Rightarrow y=-2\) thay vào \(x=\frac{4y}{9}=\frac{4.\left(-2\right)}{9}=-\frac{8}{9}\)
a)
- Vì \(\sqrt{x+3}\) lớn hơn hoặc = 0 với mọi x lớn hơn hoặc = -3
=> A lớn hơn hoặc = 2.
Dấu = xra khi và chỉ khi \(\sqrt{x+3}\)= 0
=> x + 3 = 0
x = -3
Vậy..........
b)
Ta có: B lớn hơn hoặc = / x - 1 / + / x - 3 / = / x - 1 / + / 3 - x /
Mà / x - 1 / + / 3 - x / lớn hơn hoặc = / x - 1 + 3 - x / = /2/ = 2
=> B lớn hơn hoặc = 2.
Dấu = xra khi và chỉ khi : (x-1)(3-x) lớn hơn hoặc = 0 và / x - 2 / = 0. (1)
Giải (1) được x = 2 TM.
Vậy min B = 2 <=> x=2.
1)a) -1/3 ; -0,3 ; -2/5 ; 0 ;1 ; 2
b) 0 ; -0,3 ; -1/3 ; -2/5 ; 1 ; 2
Ta có:\(||x-2|-3|=4\Rightarrow\orbr{\begin{cases}|x-2|-3=4\\|x-2|-3=-4\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}|x-2|=7\\|x-2|=-1\end{cases}}\)
Mà\(|x-2|\ge0\)
\(\Rightarrow|x-2|=7\Rightarrow\orbr{\begin{cases}x-2=7\\x-2=-7\end{cases}}\Rightarrow\orbr{\begin{cases}x=9\\x=-5\end{cases}}\)
23x+2=4x+5
4x*2x-4x=5-2
4x(2x-1)=3