Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Phân tích : 34 = 2 . 17 và 2.
Vậy ƯCLN(34 ; 2) = 2
b) Phân tích 291 = 3 . 97 và 97.
Vậy ƯCLN(291 ; 97) = 97
c) Đặt ƯCLN(4n+3 ;5n+1) = d
=> 4n + 3 chia hết cho d và 5n + 1 chia hết cho d
=> 5 . (4n + 3) - 4 . (5n + 1) = 20n + 15 - 20n + 4 = 11 chia hết cho d
=> d \(\in\) Ư(11)
Vì d lớn nhất nên d = 11
Vậy ƯCLN(4n+3 ; 5n+1) = 11
ƯCLN(530;410)=10
ƯCLN(410;205)=5
ƯCLN(205;150)=5
ƯC(410;150)={1;2;5;10}
ƯCLN(530;205;150)=5
cho ước chung lớn nhất của m và n =1
a,ước chung lớn nhất của m+n và n
b,ước chung lớn nhất m.n và m+n
Ước chung của 12 và 24 là 1; 2; 3; 4; 6; 12
Bội chung của 3 và 5 là 15; 30; 45; 60; 75; 90;...
Ước chung của 36, 12 và 48 là 1; 2; 3; 4; 6; 12
Học tốt!!!
Phân tích thành tích các thừa số nguyên tố: \(225=3^2.5^2,60=2^2.3.5\)
\(ƯCLN\left(225,60\right)=3.5=15\)
\(ƯC\left(225,60\right)=Ư\left(15\right)=\left\{-15,-5,-3,-1,1,3,5,15\right\}\)
\(BCNN\left(225,60\right)=2^2.3^2.5^2=900\)
\(BC\left(225,60\right)=B\left(900\right)\)
Gọi ƯC(2n + 1 và 3n + 1)= d
Ta có :
2n + 1 chia hết cho d => 3(2n + 1 ) chia hết cho d
Hay 6n + 3 chia hết cho d ( 1 )
3n + 1 chia hết cho d => 2(3n + 1 ) chia hết cho d
Hay 6n + 2 chia hết cho d ( 2 )
Từ (1 ) và ( 2 ) => ( 6n + 3 - 6n - 2 ) chia hết cho d
=> 1 chia hết cho d
=> d là ước của 1
=> d thuộc tập hợp ước của 1
=> tập hợp ước chung của 2n + 1 và 3n + 1 là -1 và 1
Gọi d là ước chung của 5n + 6 và 8n + 7
=> d là ước 3n + 1
=> d là ước chung của 5n + 6 và 3n + 1 → d là ước 2n + 5
=> d là ước chung của 3n + 1 và 2n + 5 → d là ước n - 4
=> d là ước chung của 2n + 5 và n - 4 → d là ước của n + 9
=> d là ước chung của n + 9 và n - 4 → d là ước của 13
Vậy tập hợp các ước chung ( không âm ) của 5n + 6 và 8n + 7 = { 1 ; 13 }
Nếu n # 4 + 13 k thì tập hợp ước chung của 5n + 6 và 8n + 7 là 1
Ta có:
\(5566=2\cdot11^2\cdot23\)
\(1815=3\cdot11^2\cdot5\)
\(\Rightarrow BCNN\left(5566,1815\right)=2\cdot5\cdot3\cdot11^2\cdot23=83490\)
\(\Rightarrow BC\left(5566,1815\right)=B\left(83490\right)=\left\{0;83490;166980;250470;...\right\}\)