Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với n=1 thì đằng thức trên luôn đúng
Giả sử đẳng thức trên đúng với n=k tức là \(1^3+2^3+....+k^3=\left(1+2+...+n\right)^2\)
Ta CM : Đằng thức trên cũng đúng với n=k+1
khi đó đẳng thức trở thành
\(1^3+2^3+...+k^3+\left(k+1\right)^3=\left(1+2+...+k+\left(k+1\right)\right)^2\left(1\right)\)
VP(1)=\(\left(\dfrac{k+2}{2}\right)^2=\dfrac{k^2+4k+4}{4}\)
CMTT : VT(1) cũng bằng nó
=> đpcm theo phương pháp quy nạp
A=2+22+23+24+...+212
A=(2+22+23)+(24+25+26)+...+(210+211+212)
A=14.1+23.14+...+29.14
A=14(1+23+...+29)\(⋮\)7
Vậy A\(⋮\)7
\(A=2\left(1+2+2^2\right)+...+2^{10}\left(1+2+2^2\right)=7\cdot\left(2+...+2^{10}\right)⋮7\)
\(A=2+2^2+2^3+....+2^{12}\\ \Rightarrow A=\left(2+2^2+2^3\right)+.....+\left(2^{10}+2^{11}+2^{12}\right)\\ \Rightarrow A=2.\left(1+2+2^2\right)+....+2^{10}\left(1+2+2^2\right)\)
\(\Rightarrow A=2.7+....+2^{10}.7\\ \Rightarrow A=7\left(2+....+2^{10}\right)⋮7\)
Ta có
\(M=\left(5+5^2\right)+5^2\left(5+5^2\right)+......+5^{98}\left(5+5^2\right)+5^{101}\)
Dễ thấy \(\left(5+5^2\right)+5^2\left(5+5^2\right)+......+5^{98}\left(5+5^2\right)\) chia hết cho 10 và có chứ số tận cùng là 0
5101 có chữ số tận cùng là 5
=> M có tân cùng là 5
=>c=5 (1)
Mặt khác
\(\overline{abcd}⋮26\Rightarrow\overline{ab0d}⋮25\)
=> d =0 để thỏa mãn diều kiện (2)
Ta có
\(\overline{ab}=a+b^2\)
\(\Rightarrow10a+b=a+b^2\)
\(\Rightarrow9a=b\left(b-1\right)\)
Mà \(\left(b;b-1\right)=1\)
=>\(\Rightarrow\left[\begin{array}{nghiempt}b⋮9\\b-1⋮9\end{array}\right.\)
Xét điều kiện của b
\(0\le b\le9\)
Ta thấy từ 1 đến 9 chỉ có 9 chia hết cho 9
\(\Rightarrow\left[\begin{array}{nghiempt}b=9\\b-1=9\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}b=9\left(TM\right)\\b=10\left(KTM\right)\end{array}\right.\)
=> b=9 (3)
=>9a=9
=>a=1 (4)
Từ (1);(2);(3) và (4)
=>\(\overline{abcd}=1950\)
Ta thấy:\(\begin{cases}\left(x+3\right)^2\\2\left|y-1\right|\end{cases}\ge0\)
\(\Rightarrow\left(x+3\right)^2-2\left|y-1\right|\ge0\)
\(\Rightarrow\left(x+3\right)^2-2\left|y-1\right|+3\ge3\)
\(\Rightarrow A\ge3\)
Dấu = khi \(\begin{cases}x=-3\\y=1\end{cases}\)
Vậy MinA=3 khi \(\begin{cases}x=-3\\y=1\end{cases}\)
ko có đề bài hả bạn??