Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: a + b + c = 0.
=> a = - b - c
b = -a - c
c = - a- b.
Nên ta có:
ab + bc + ca = (-b-c)b + (-a-c)c + (-a-b)a
= -b^2 - bc - ca -c^2 - a^2 - ab
= -( a^2 + b^2 + c^2)- (ab + bc + ca)
=> 2(ab + bc + ca) = -(a^2 + b^2 +c^2)
Mà -(a^2 + b^2 + c^2) bé hơn hoặc bằng 0 (do a^2 + b^2 + c^2 lớn hơn hoặc bằng 0)
=> 2(ab + bc + ca ) bé hơn hoặc bằng 0.
=> ab + bc + ca bé hơn hoặc bằng 0.
Vậy ab + bc + ca bé hơn hoặc bằng 0.
Ta có:
\(\Rightarrow a\left(a+b+c\right)=b\left(a+b+c\right)=c\left(a+b+c\right)=0\)
\(\Rightarrow a^2+ab+ac=ab+b^2+bc=ca+cb+c^2=0\)
\(\Rightarrow\left(ab+bc+ca\right)+\left(a^2+b^2+c^2\right)=0\)
Do \(a^2+b^2+c^2\ge0\Rightarrow ab+bc+ca\le0^{đpcm}\)
\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\Rightarrow\frac{abc}{\left(a+b\right).c}=\frac{abc}{a.\left(b+c\right)}=\frac{cab}{\left(c+a\right).b}\Leftrightarrow\frac{abc}{ac+bc}=\frac{abc}{ab+ac}=\frac{abc}{bc+ab}\)\(\Rightarrow ab+bc=ab+ac=bc+ab\)
\(\left(+\right)ac+bc=ab+ac\Rightarrow bc=ab\Rightarrow c=a\)(do b # 0)
\(\left(+\right)ab+ac=bc+ab\Rightarrow ac=bc\Rightarrow a=b\)(do c # 0)
\(\Rightarrow a=b=c\)
Khi đó \(M=\frac{ab+bc+ca}{a^2+b^2+c^2}=\frac{a^2+a^2+a^2}{a^2+a^2+a^2}=1\)
**** ^_^
B2 : Hình dễ bạn tử kẻ hình nhá !
a)Ta có AH là đường cao
=> Góc AHB = AHC = 90o
Xết tam giác AHB có :
BAH + AHB + HBA = 180o ( tổng 3 góc trong 1 tam giác )
=> BAH + 90o + 70o =180o
=> BAH = 180o-70o-90o
=> BAH = 20o
Xét tam giác AHC cps :
AHC + HAC + HCA = 180o
=> 90 + HAC + 30 = 180
=> HAC = 180-30-90=60o
b) Ta có AD là đường phân giác
=> ABD= CAD = 80/2 = 40o
Xét tam giác ADB có :
ABD + BDA +DAB = 180
=> 70 + BDA + 40 = 180
=> BDA = 180-40-70 = 70
Xét tam giác ADC có :
ACD + CDA + DAC = 180
=> 30 + CDA + 40 = 180
=> CDA = 180-40-30
=> CDA=110
( **** )
Bài 1) .
Ta có : AB =AC ( gt)
=> ∆ABC cân tại A
=> B = C
Xét ∆ ABE và ∆ ACD ta có
AD = DE ( gt)
AB = AC ( gt)
B = C ( cmt)
=> ∆ABE = ∆ACD ( c.g.c)
=> EAB = DAC (dpcm)
b) Vì M là trung điểm BC
=> BM = MC
Mà ∆ABC cân tại A ( cmt)
=> AM là trung tuyến ∆ABC
=> AM là trung tuyến đồng thời là đường cao và phân giác ∆ABC
Mà D,E thuộc BC
AM vuông góc với DE
Mà ∆ADE cân tại A ( AD = AE )
=> AM là đường cao đồng thời là phân giác và trung tuyến ∆ ADE
=> AM là phân giác DAE
c) Vì AM là phân giác DAE
=> DAM = EAM = 60/2 = 30 độ
= > Mà AM vuông góc với DE (cmt)
=> AME = AMD = 90 độ
=> AME + MAE + AEM = 180 độ
=> AEM = 180 - 90 - 30 = 60 độ
Mà ∆ADE cân tại A
=> ADE = AED = 60 độ
Bài 2)
Trong ∆ABC có A = 90 độ
=> BAC = 90 độ :))))))
(a+b)(b+c)(c+a) +abc= (a+b).(b.c + b.a + c.c + c.a) +abc
= (a+b).(a.b + b.c + c.a) + (a+b).(c.c) +abc
= (a+b+c).(a.b + b.c + c.a) - c.(a.b + b.c + c.a) + (a+b).(c.c) +abc
= (a+b+c).(a.b + b.c + c.a) - a.b.c - b.c.c - c.c.a + a.c.c + b.c.c +abc
= (a+b+c).(a.b + b.c + c.a) - a.b.c+abc
=(a+b+c)0+0=0
sao hùi nãy
(a+b)+(b+c)+(c+a)+abc=0
hử