Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P = 7 + 72 + 73 + ... + 72016
=> P = 7( 1 + 7 + 72 + 73) + ... + 72013( 1 + 7 + 72 + 73)
=> P = 7( 1 + 7 + 49 + 343) + ... + 72013( 1 + 7 + 49 + 343)
=> P = 7 . 400 + ... + 72013 . 400
=> P = (7 + ... + 72013) . 400
=> P = (7 + ... + 72013) . 202 (đpcm)
Ta có: Aabc =A.1000+abc
vì 1000 chia hết cho 125 và 8
nên tính chất của Aabc đối với 125 và 8
phụ thuộc vào ba số cuối abc
theo bài gia ta có
(abc-4) chia hết cho 125
=>(abc-4) có tận cùng là 5 hoặc 0
=> abc có tân cùng là 9 hoặc 4 (1)
(abc-7) chia hết cho 8
=> (abc-7) chẵn
=> abc lẻ (2)
Từ (1) và (2) suy ra c=9
ta có ab9-4=ab5=125.k (với 0<k<8)
Lại có ab9-7 chia hết cho 8
Suy ra ab5-3 chia hết cho 8
<=>125.k-3 chia hết cho 8
<=>(128k-3k-3) chia hết cho 8
<=>128k-3(k+1) chia hết cho 8
<=>3(k+1) chia hết cho 8 (vì 128k chia hết cho 8)
<=>k+1 chia hết cho 8 (vì 3 chia 3 dư 3)
<=>k=7 (vì 0<k<8)
Suy ra số cần tìm là 125.k+4=125.7+4=879
Câu 1 : Việc gõ ký hiệu như bạn đề cập ; mình cũng không biết phải làm sao nên cứ dùng xyz vậy thôi.
Ta có:
xyz = 100x +10y +z = 111x -11x +10y +z = 37.3x -(11x-10y-z) chia hết cho 37
=> (11x-10y-z) chia hết cho 37
Lại có:
xyz -yzx = 100x +10y +z -100y -10z -x = 99x -90y -9z = 9.(11x-10y-z) chia hết cho 37
Vậy yzx cũng phải chia hết cho 37
Có thể phát biểu hay hơn là CMR: Khi hoán vị các chữ số của 1 số có 3 chữ số chia hết cho 37 thì được số mới cũng chia hết cho 37.
Lời giải:
\(A=a_1a_2+a_2a_3+....+a_{n-1}a_n+a_na_1=0\)
Nếu $n$ lẻ, ta thấy tổng $A$ gồm lẻ số hạng, mỗi số hạng có giá trị $1$ hoặc $-1$ nên $A$ lẻ \(\Rightarrow A\neq 0\) (vô lý)
Do đó $n$ chẵn. Nếu $n$ có dạng $4k+2$. Vì $A=0$ nên trong $4k+2$ số hạng trên sẽ có $2k+1$ số có giá trị là $1$ và $2k+1$ số có giá trị $-1$. Vì mỗi số $a_i$ trong $A$ xuất hiện $2$ lần nên \(a_1a_2a_2a_3....a_{n-1}a_na_{n}a_{1}=(a_1a_2...a_n)^2=1^{2k+1}(-1)^{2k+1}=-1\) (vô lý)
Do đó $n$ phải có dạng $4k$, tức là $n$ chia hết cho $4$ (đpcm)
Ta có :
\(3^{n+2}-2^{n+2}+3^n-2^n=3^n.3^2-2^n.2^2+3^n-2^n=\left(3^n.3^2+3^n\right)-\left(2^n.2^2+2^n\right)=\left[3^n.\left(3^2+1\right)\right]-\left[2^n.\left(2^2+1\right)\right]=3^n.10-2^n.5=3^n.10-2^{n-1}.10=10.\left(3^n-2^{n-1}\right)\) chia hết cho 10
Bạn nhấn tổ hợp phím Ctrl + - để thu nhỏ màn hình mới xem được đầy đủ lời giải nhá !
Gọi số tự nhiên cần tìm là x.
Đặt A=x-5 x chia 29 dư 5
=> A chia hết cho 29 x chia 31 dư 28
=> A chia 31 dư 23 =>A=31k+23
Cho k=0,1,2,3,... ta thấy khi k=3 thì A=116 chia hết cho 29
Vậy x=A+5=116+5=121.
like nhe
Giải:
Tích 71 × 72 × ... × 80 có tận cùng 3 chữ số (vì 75 × với 1 số chia hết cho 4 trong khoảng này có tận cùng 2 chữ số 0, và 80 có 1 chữ số 5).
Tích 81 × 82 × ... × 90 có tận cùng 2 chữ số 0 (vì 85 × 82:có tận cùng 1 chữ số 0 và 90 có 1 chữ số 0).
Vậy tích T có tận cùng là : 3 + 2 = 5 (chữ số 0).
\(\Leftrightarrow\left(a+1,b+2\right)\in\left\{\left(1;3\right);\left(3;1\right);\left(-1;-3\right);\left(-3;-1\right)\right\}\)
\(\Leftrightarrow\left(a,b\right)\in\left\{\left(0;1\right);\left(2;-1\right);\left(-2;-5\right);\left(-4;-3\right)\right\}\)
Gọi số tự nhiên được cho ban đầu là x. Vì x chia 7 dư 5 nên x=7k+5.
Mặt khác x chia 13 dư 4 nên x-4=7k+1 chia hết cho 13.
Lại có 2.7-13=1 nên 7k+2.7-13=7(k+2)-13 chia hết cho 13.
Suy ra k+2 chia hết cho 13, tức là k=13m-2
Vậy x=7(13m-2)+5=91m-9, tức là x chia 91 dư -9
Chắc dư -9