K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2020

Câu b, c, thôi cx được ạ

27 tháng 2 2020

A B C E D H I

Xét tam giác BCD và tam giác CBE

có BC chung

góc CDB = góc CEB=900

góc EBC=góc DCB ( vì tam giác ABC cân tại A)

suy ra tam giác BCD = tam giác CBE ( cạnh huyền-góc nhọn)  (1)

b)  Từ (1) suy ra góc CBD=góc BCE ( hai góc tương ứng) (2)

Mà góc CBD + góc DBE= góc CBE  (3)

góc BCE+góc ECD = góc BCD  (4) 

góc EBC=góc DCB ( vì tam giác ABC cân tại A)  (5)

Từ (2), (3), (4) , (5) suy ra góc DCE=góc EBD

hay góc IBE = góc ICD

c) Từ (1) suy ra AE=AD (hai cạnh tương ứng)

Xét tam giác vuông ADI và tam giác vuông AEI có 

AI chung, AD=AE (CMT)

suy ra tam giá ADI = tam giác  AEI (cạnh huyền-cạnh góc vuông)

suy ra góc EAI = góc DAI (hai góc tương ứng)

suy ra AI là  tia phân giác của góc BAC

mà tam giác ABC cân tại A

suy ra AI là đường phân giác đồng thời là đường cao

AI vuông góc với BC tại H 

4 tháng 5 2019

A B C D K M Q

a) b) cậu biết làm rồi nhé

c) Vì K là trung điểm cạnh BC ( gt )

\(\Rightarrow DK\)là trung tuyến cạnh BC.

 Vì A là trung điểm của BD

\(\Rightarrow AC\)là trung tuyến cạnh BD

mà DK cắt AC tại M 

\(\Rightarrow M\)là trọng tâm của tam giác BCD.

\(\Rightarrow MC=\frac{2}{3}AC\left(tc\right)\)

( BẠN TỰ THAY VÀO NHA )

4 tháng 5 2019

d) Vì tam giác BCD cân ( cmt )

\(\Rightarrow BC=DC\left(đn\right)\)

Mà AC là  trung tuyến của tam giác BCD ( cmt )

\(\Rightarrow AC\)cũng là đường phân giác của góc BCD .( tc)

\(\Rightarrow\widehat{BCA}=\widehat{DCA}=\frac{1}{2}\widehat{BCD}\)

Xét tam giác BCM và tam giác DCM có:

    \(\hept{\begin{cases}CMchung\\BC=CD\left(cmt\right)\\\widehat{BCA}=\widehat{DCA}\left(cmt\right)\end{cases}\Rightarrow\Delta BCM=\Delta DCM\left(c-g-c\right)}\)

\(\Rightarrow\hept{\begin{cases}BM=DM\left(2canht.ung\right)\left(1\right)\\\widehat{CBM}=\widehat{CDM}\left(2goct.ung\right)\end{cases}}\)

Xét tam giác BMK và tam giác DMQ có:

   \(\hept{\begin{cases}BM=DM\left(cmt\right)\\\widehat{CDM}=\widehat{CBM}\left(cmt\right)\\\widehat{BMK}=\widehat{QMD}\left(2gocdoidinh\right)\end{cases}\Rightarrow\Delta BMK=\Delta DMQ\left(g-c-g\right)}\) 

 \(\Rightarrow MK=MQ\left(2canht.ung\right)\left(2\right)\)

Vì M là trọng tâm của tam giác BCD (cmt)  (4)

 mà DK là trung tuyến của tam giác BCD (cmt)

\(\Rightarrow DM=2.MK\left(tc\right)\left(3\right)\)

Từ (1), (2) và (3) \(\Rightarrow BM=2.MQ\)

\(\Rightarrow BQ\)là trung tuyến của tam giác BCD (5)

Từ (4) và (5) \(\Rightarrow B,M,Q\)thẳng hàng

24 tháng 8 2019

Bạn

thể vẽ hình đc ko mk ko bt vẽ trên máy tính rồi mk giải cho

Bài 1 : Cho tam giác ABC có AB = 3cm , AC= 4cm và BC = 5cm.a) Tam giác ABC là tam giác gì?Vì sao?b)Trên cạnh BC lấy điểm D sao cho BA=BD.Từ D vẽ Dx vuông góc với BC và cắt AC tại H.Chứng minh BH là tia phân giác góc ABC.c)Vẽ trung tuyến AM.Chứng minh tam giác AMC cânBài 2 : Cho tam giác ABC vuông tại A có đường cao AH.Biết AH= 4cm,HB= 2cm,HC= 8cma) Tính độ dài các cạnh AB,ACb) Chứng minh góc B > góc CBài 3 : Cho góc xOy có...
Đọc tiếp

Bài 1 : Cho tam giác ABC có AB = 3cm , AC= 4cm và BC = 5cm.

a) Tam giác ABC là tam giác gì?Vì sao?

b)Trên cạnh BC lấy điểm D sao cho BA=BD.Từ D vẽ Dx vuông góc với BC và cắt AC tại H.Chứng minh BH là tia phân giác góc ABC.

c)Vẽ trung tuyến AM.Chứng minh tam giác AMC cân

Bài 2 : Cho tam giác ABC vuông tại A có đường cao AH.Biết AH= 4cm,HB= 2cm,HC= 8cm

a) Tính độ dài các cạnh AB,AC

b) Chứng minh góc B > góc C

Bài 3 : Cho góc xOy có Oz là tia phân giác,M là điểm bất kì thuộc tia Oz.Qua M kẻ đường thẳng a vuông góc với Ox tại A cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D.

a) Chứng minh tam giác AOM = tam giác BOM từ đó suy ra OM là đường trung trực của đoạn thẳng AB

b) Tam giác DMC là tam giác gì?Vì sao?

c) Chứng minh DM + AM < AC

Bài 4 : Cho tam giác ABC vuông tại C có góc A= 60 độ,phân giác của góc BAC cắt BC tại E.Kẻ EK vuông góc AB tại K (K thuộc A).Kẻ BD vuông góc AE tại D (D thuộc AE).Chứng minh

a) Tam giác ACE = tam giác AKE

b) AE là đường trung trực của đoạn thẳng CK

c) KA = KB

d) EB > EC

Bài 5 : Cho tam giác ABC vuông tại A,đường cao AH.Trên cạnh BC lấy điểm D sao cho BD=BA.

a) Chứng minh góc BAD = góc BDA

b) Chứng minh AD là tia phân giác của góc HAC

c) Vẽ DK vuông góc AC.Chứng minh AK = AH

d) Chứng minh AB + AC < BC + AH

Bài 6 : Cho tam giác ABC có AB = 6cm, AC = 8cm, BC= 10cm.Gọi K là trung điểm của đoạn thẳng BC,đường trung trực của đoạn thẳng BC cắt cạnh AC tại M. Gọi D là hình chiếu vuông góc của C trên đường thẳng BM.Chứng minh rằng :

a) Tam giác ABC vuông tại A 

b) AB = DC

c) Ba đường thẳng AB , MK ,CD cùng đi qua một điểm

Bài 7 : Cho tam giác ABC vuông tại A có AB < AC. Trên cạnh huyền BC lấy điểm K sao cho CK = CA.Vẽ CM vuông góc AK tại M.Vẽ AD vuông góc BC tại D.AD cắt CM tại H.Chứng minh: 

a) Tam giác MCK = tam giác MCA 

b) HK // AB

c) HD < HA

6
29 tháng 4 2019

1
B A H C M D

a) Xét \(\Delta\)ABC:AB2+AC2=9+16=25=BC2=>\(\Delta\)ABC vuông tại A

b) Xét \(\Delta\)ABH và\(\Delta\)DBH:

                  BAH=BDH=90

                  BH chung

                  AB=DB

=>\(\Delta\)ABH=\(\Delta\)DBH(cạnh huyền-cạnh góc vuông)=>ABH=DBH=>BH là tia phân giác góc ABC

c) Áp dụng Định lý sau:"trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền"cho tam giác vuông ABC, ta có:AM=1/2BC=CM

Suy ra \(\Delta\)AMC cân tại M

29 tháng 4 2019

2.

C B A H

a) Áp dụng Định lý Pythagoras cho tam giác vuông ABH, ta có:

AB2=BH2+AH2=22+42=>AB=\(\sqrt{20}\)cm

Áp dụng Định lý Pythagoras cho tam giác vuông ACH, ta có:

AC2=AH2+CH2=42+82=>AC=\(\sqrt{80}\)cm

b) Xét \(\Delta\)ABC:AB<AC(Suy ra trực tiếp từ kết quả câu a)

Suy ra: B>C (Định lý về cạnh và góc đối diện trong tam giác)

1.Cho tam giác ABC.Hai đường cao kể từ B và C cắt nhau tại H.Biết AC=BH.Tính góc ABC.2.Cho tam giác ABC.Hai đường cao kể từ B và C cắt nhau tại H.Biết AC=BH.Tính góc ABC3.Cho tam giácABC vuông cân tại A.M là trung điểm BC.Trên cạng BClấy điểm E.Trên cạnh AClấy điểm F sao cho góc EFM =900.C/m AE =CF4.Cho tam giác ABC có AB =3 cm.Góc A=75 độ,góc C=60 độ.Trên nửa mặt phẳng bờ chứa BC có chứa A vẽ tia Bx sao...
Đọc tiếp

1.Cho tam giác ABC.Hai đường cao kể từ B và C cắt nhau tại H.Biết AC=BH.Tính góc ABC.

2.Cho tam giác ABC.Hai đường cao kể từ B và C cắt nhau tại H.Biết AC=BH.Tính góc ABC

3.Cho tam giácABC vuông cân tại A.M là trung điểm BC.Trên cạng BClấy điểm E.Trên cạnh AClấy điểm F sao cho góc EFM =900.C/m AE =CF

4.Cho tam giác ABC có AB =3 cm.Góc A=75 độ,góc C=60 độ.Trên nửa mặt phẳng bờ chứa BC có chứa A vẽ tia Bx sao cho góc CBx =15 độ.Từ A vẽ một đường thẳng vuông góc với AB,cắt Bx tại D.

a) c/m BC vuông góc với Bx

b)Tính tổng BC2+CD2

5.cho tam giác ABC có AB > AC . Từ trung điểm M của BC vẽ một đường thẳng vuông góc với tia phân giác của góc A, cắt tia phân giác tại H, cắt AB, AC lần lượt tại E VÀ F. chứng minh rằng :

a) BE=CF

b) AB+AC=2AE

c)ACB^-ABC^=2BEM^

 

 

CAC BN GIUP MNH GAP!!!

MINH DANG CAN+-+!!

 

0