K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2020

tự vẽ hình nha

Xét tam giác ABD và tg EBD có

góc BAD = góc BED =90 độ

BD chung

góc ABD = góc EBD ( vì BD là p giác)

=> tg ABD = tg EBD( ch-gn)

=> AB = BE ( 2 cạnh tương ứng)

=> tg ABE cân tại B

mà góc ABE =60 độ

=> tg ABE là tg đều

Hok tốt

Bài 1 : Cho tam giác ABC có AB = 3cm , AC= 4cm và BC = 5cm.a) Tam giác ABC là tam giác gì?Vì sao?b)Trên cạnh BC lấy điểm D sao cho BA=BD.Từ D vẽ Dx vuông góc với BC và cắt AC tại H.Chứng minh BH là tia phân giác góc ABC.c)Vẽ trung tuyến AM.Chứng minh tam giác AMC cânBài 2 : Cho tam giác ABC vuông tại A có đường cao AH.Biết AH= 4cm,HB= 2cm,HC= 8cma) Tính độ dài các cạnh AB,ACb) Chứng minh góc B > góc CBài 3 : Cho góc xOy có...
Đọc tiếp

Bài 1 : Cho tam giác ABC có AB = 3cm , AC= 4cm và BC = 5cm.

a) Tam giác ABC là tam giác gì?Vì sao?

b)Trên cạnh BC lấy điểm D sao cho BA=BD.Từ D vẽ Dx vuông góc với BC và cắt AC tại H.Chứng minh BH là tia phân giác góc ABC.

c)Vẽ trung tuyến AM.Chứng minh tam giác AMC cân

Bài 2 : Cho tam giác ABC vuông tại A có đường cao AH.Biết AH= 4cm,HB= 2cm,HC= 8cm

a) Tính độ dài các cạnh AB,AC

b) Chứng minh góc B > góc C

Bài 3 : Cho góc xOy có Oz là tia phân giác,M là điểm bất kì thuộc tia Oz.Qua M kẻ đường thẳng a vuông góc với Ox tại A cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D.

a) Chứng minh tam giác AOM = tam giác BOM từ đó suy ra OM là đường trung trực của đoạn thẳng AB

b) Tam giác DMC là tam giác gì?Vì sao?

c) Chứng minh DM + AM < AC

Bài 4 : Cho tam giác ABC vuông tại C có góc A= 60 độ,phân giác của góc BAC cắt BC tại E.Kẻ EK vuông góc AB tại K (K thuộc A).Kẻ BD vuông góc AE tại D (D thuộc AE).Chứng minh

a) Tam giác ACE = tam giác AKE

b) AE là đường trung trực của đoạn thẳng CK

c) KA = KB

d) EB > EC

Bài 5 : Cho tam giác ABC vuông tại A,đường cao AH.Trên cạnh BC lấy điểm D sao cho BD=BA.

a) Chứng minh góc BAD = góc BDA

b) Chứng minh AD là tia phân giác của góc HAC

c) Vẽ DK vuông góc AC.Chứng minh AK = AH

d) Chứng minh AB + AC < BC + AH

Bài 6 : Cho tam giác ABC có AB = 6cm, AC = 8cm, BC= 10cm.Gọi K là trung điểm của đoạn thẳng BC,đường trung trực của đoạn thẳng BC cắt cạnh AC tại M. Gọi D là hình chiếu vuông góc của C trên đường thẳng BM.Chứng minh rằng :

a) Tam giác ABC vuông tại A 

b) AB = DC

c) Ba đường thẳng AB , MK ,CD cùng đi qua một điểm

Bài 7 : Cho tam giác ABC vuông tại A có AB < AC. Trên cạnh huyền BC lấy điểm K sao cho CK = CA.Vẽ CM vuông góc AK tại M.Vẽ AD vuông góc BC tại D.AD cắt CM tại H.Chứng minh: 

a) Tam giác MCK = tam giác MCA 

b) HK // AB

c) HD < HA

6
29 tháng 4 2019

1
B A H C M D

a) Xét \(\Delta\)ABC:AB2+AC2=9+16=25=BC2=>\(\Delta\)ABC vuông tại A

b) Xét \(\Delta\)ABH và\(\Delta\)DBH:

                  BAH=BDH=90

                  BH chung

                  AB=DB

=>\(\Delta\)ABH=\(\Delta\)DBH(cạnh huyền-cạnh góc vuông)=>ABH=DBH=>BH là tia phân giác góc ABC

c) Áp dụng Định lý sau:"trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền"cho tam giác vuông ABC, ta có:AM=1/2BC=CM

Suy ra \(\Delta\)AMC cân tại M

29 tháng 4 2019

2.

C B A H

a) Áp dụng Định lý Pythagoras cho tam giác vuông ABH, ta có:

AB2=BH2+AH2=22+42=>AB=\(\sqrt{20}\)cm

Áp dụng Định lý Pythagoras cho tam giác vuông ACH, ta có:

AC2=AH2+CH2=42+82=>AC=\(\sqrt{80}\)cm

b) Xét \(\Delta\)ABC:AB<AC(Suy ra trực tiếp từ kết quả câu a)

Suy ra: B>C (Định lý về cạnh và góc đối diện trong tam giác)

13 tháng 4 2019

Hình (tự vẽ)

a) ΔABE cân

Xét hai tam giác vuông ABH và EBH có:

\(\widehat{ABH}=\widehat{EBH}\)(BH là phân giác)

HB là cạnh chung.

Do đó: ΔABH = ΔEBH (cạnh huyền - góc nhọn)

⇒ BA = BE (2 cạnh tương ứng)

⇒ ΔABE cân tại B.

b) ΔABE đều

Vì ΔABE là tam giác cân (câu a) có góc B bằng 60o (gt) ⇒ ΔABE là tam giác đều.

c) AED cân 

Vì ΔABH = ΔEBH (câu a) ⇒ AH = EH (2 cạnh tương ứng)

Xét hai tam giác vuông ADH và EDH có:

AH = EH (cmt)

HD: cạnh chung

Do đó: ΔADH = ΔEDH (2 cạnh góc vuông)

⇒ \(\widehat{DAH}=\widehat{DEH}\)(góc tương ứng)

⇒ ΔAED cân tại D

d) ΔABF cân

Vì AF// HB ⇒ góc BAF = ABH = 30o (so le trong)     (1)

Ta có: \(\widehat{ABC}+\widehat{ABF}=180^o\)(kề bù)

Thay: 60o + ABF = 180o

⇒ ABF = 180o - 60o = 120o

Xét ΔABF, ta có: 

\(\widehat{ABF}+\widehat{BFA}+\widehat{FAB}=180^o\)(ĐL)

Thay: 120o + BFA + 30o = 180o

⇒ BFA = 180 - 120 - 30 = 30 (2)

Từ (1) và (2) suy ra: ΔABF cân tại B.

21 tháng 3 2019

a) Tam giác ABD vuông và tam giác EBD vuông đều có cạnh BD 

Suy ra góc ABD = góc EBD 

Vậy tam giác ABD = tam giác EBD 

b) Ta có: AB=EB ( tam giác ABD = tam giác EBD ) 

Suy ra tam giác ABE cân tại B 

Tam giác ABE cân tại B có góc EBA =60 độ 

Suy ra tam giác ABE là tam giác đều 

c) Tam giác ABC có góc CAB = 90 độ, góc CBA = 60 độ 

Suy ra ACB = 30 độ 

Suy ra tam giác ABC là nửa tam giác đều  

Suy ra AB = 1/2 BC 

Suy ra BC = 2AB = 2 . 5 = 10 cm

-Tham khảo-

21 tháng 3 2019

a,  Xét tam giác ABD và tam giác EBD có :

BD chung

góc ABD = góc EBD ( vì BD là phân giác của ABC)

=> tam giác ABD=tam giác EBD ( cạnh huyền-góc nhọn)

b, Vì tam giác ABD= tam giác EBD (  câu a)

=> AB=EB

Xét tam giác ABE có :

AB=EB

=> Tam giác ABE cân tại B

Xét tam giác ABE cân tại B có :

ABE =60 độ( vì góc ABC=60 độ)

=> Tan giác ABE đều

c, Xét tam giác ABC vuông tai jS có :

góc ABC =60 độ ( giả thiết), góc BAC= 90 độ( Vì tam giác ABC vuông tại A)

=> góc C = 30 độ

Mà trong tam giác vuông , cạnh đối diện với góc 30 độ bằng nửa cạnh huền

=> 2AB = BC . Mà AB = 5 ( giả thiết)

=> BC =10

Áp dụng định lý PYTAGO vào tam giác ABC vuông tại A có :

 BC^2 = AB^2 + AC^2 . Mà AB = 5 , BC =10

=> 10^2 = 5^2 + AC^2

=> 100=25 + AC^2

=> AC^2 = 75 

=> AC = căn bậc 2 của 75 ( Vì mình ko đánh dấu căn bậc 2 được nên đành phải viết)

8 tháng 6 2020

hình tự kẻ nghen:333

a) Xét tam giác ABD và tam giác EBD có

B1=B2( gt)

BD chung

BAD=BED(=90 độ)

=> tam giác ABD= tam giác EBD( ch-gnh)

b) từ tam giác ABD= tam giác EBD=> AB=EB( hai cạnh tương ứng)

=> tam giác ABE cân B mà ABC= 60 độ=> ABE đều

c) vì ABE đều=> BAE= 60 độ, AB=EB=AE

ta có BAC= BAE+EAC=90 độ

=> EAC=90-60=30 độ

vì tam giác ABC vuông tại A và có ABC=60 độ

=> ACB= 30 độ

=> ACB=EAC=> tam giác EAC cân E=> AE=EC=> AE=EC=EB=AB

ta có BC= BE+EC=> BC= 5cm+5cm=10cm

27 tháng 4 2017

sao không ai trả lời hộ thế

16 tháng 6 2017

a) Tam giác ABD vuông và tam giác EBD vuông đều có cạnh BD

Suy ra góc ABD = góc EBD

Vậy tam giác ABD = tam giác EBD

b) Ta có: AB=EB ( tam giác ABD = tam giác EBD )

Suy ra tam giác ABE cân tại B

Tam giác ABE cân tại B có góc EBA =60 độ

Suy ra tam giác ABE là tam giác đều

c) Tam giác ABC có góc CAB = 90 độ, góc CBA = 60 độ

Suy ra ACB = 30 độ

Suy ra tam giác ABC là nửa tam giác đều 

Suy ra AB = 1/2 BC

Suy ra BC = 2AB = 2 . 5 = 10 cm

8 tháng 3 2018

B A C 5 30 30 D E  Vẽ xấu nhưng xem tạm thôi nhé!

a)Xét \(\Delta\)ABD (\(\widehat{A}=90^0\) )và \(\Delta\)EBD (\(\widehat{E}=90^0\))

Ta có:BD là cạnh chung (1)

\(\widehat{ABD}=\widehat{EBD}\) (gt)  (2)

Từ (1) và (2) ==>\(\Delta ABD=\Delta EBD\) (CH+GN)

b)..............hình như tôi ko bt nx ^^

18 tháng 4 2018

Hình bn Hoa vẽ rồi !! mk k vẽ lại nữa

a ) Phương Hoa lm rồi

b) Vì tam giác ABD = tam giác EBD ( câu a )

=> AB = EB ( cặp cạnh tượng ứng ) 

=> tam giác ABE cân (1)

Mà góc ABE = 60 độ    (2)

Từ (1) và (2) => tam giác ABE đều ( điều phải chứng minh )

c) Xét tam giác ABK và tam giác EBK có :

BD : cạnh chung

AB = BE ( vì tam giác ABE đều )

góc ABK = góc EBK = 30 độ ( vì BK là phân giác )

=> tam giác ABK = tam giác EBK ( c-g-c )

=> AK = EK ( cặp cạnh tương ứng )

Mà tam giác ABE đều => AB = EB = AE 

=> AB = EB = AE = 5cm

mà AK + EK = AE

=> AK = AE = 2,5 cm

Mà AK = EC 

=> AK = EC = 2,5cm

Vì BE + CE = BC 

=> 5 + 2,5 = BC 

=> BC = 7,5 cm 

Chúc bn học tốt !!!

17 tháng 3 2022

nưknx 

17 tháng 3 2022

a) Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E ta có:

Chung DB

Góc ABD = Góc EBD ( BD là tia phân giác của góc ABC)

⇒ Tam giác ABD = Tam giac EBD ( cạnh huyền = góc nhọn)

b)Ta có tam giác ABD = tam giác EBD ( theo a)

⇒AB = EB ( 2 cạnh tương ứng)

⇒ Tam giác ABE cân tại B ( Định nghĩa tam giác cân)