Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: \(35-3.\left|x\right|=5:\left(2^3-4\right)\)
\(35-3\left|x\right|=5:\left(8-4\right)\)
\(35-3.\left|x\right|=20\)
\(3.\left|x\right|=15\)
\(\left|x\right|=5\)
\(\Rightarrow x\in\left\{-5;5\right\}\)
Bài 2:
\(2017-\left(37+2017\right)+\left(-22+37\right)=2017-37-2017+\left(-22\right)+37\)
\(=\left(2017-2017\right)+\left(-37+37\right)+\left(-22\right)\)
\(=0+0+\left(-22\right)\)
\(=-22\)
trả lời nhanh giùm mình nha chỉ cần bài 1 thôi cx đc mấy bài kia mik biết làm rồi.Mai là mình thi òi nên mình cần cách làm để ôn thi
ta thấy \(\frac{1}{2^2}=\frac{1}{2.2}<\frac{1}{1.2};\frac{1}{3^2}=\frac{1}{3.3}<\frac{1}{2.3};...;\frac{1}{n^2}=\frac{1}{n.n}<\frac{1}{\left(n-1\right).n}\)
=>\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}<\frac{1}{1.2}+\frac{1}{2.3}+..+\frac{1}{\left(n-1\right).n}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+..+\frac{1}{n^2}<1-\frac{1}{n}<1\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+..+\frac{1}{n^2}<1\left(đpcm\right)\)
g) C = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + 9 + ... + 2002 - 2003 - 2004 + 2005 + 2006
Số số hạng của C từ 1 đến 2004 là : ( 2004 - 1 ) : 1 + 1 = 2004 số
Nhóm 4 số thành 1 cặp ta được : 2004 : 4 = 501 cặp
=> C = ( 1 + 2 - 3 - 4 ) + ( 5 + 6 - 7 - 8 ) + ... + ( 2001 + 2002 - 2003 - 2004 ) + ( 2005 + 2006 )
C = -4 + ( -4 ) + ... + ( -4 ) + 4011
C = -4 . 501 + 4011
C = -2004 + 4011
C = 2007
h) D = 12 - 22 + 32 - 42 + ... + 992 - 1002 + 1012
=> D = ( 12 - 22 ) + ( 32 - 42 ) + ... + ( 992 - 1002 ) + 1012
=> D = (−1)(1 + 2) + (−1)(3 + 4)+. . . . +(−1)(99 + 100) + 1012
=> D = −(1 + 2+. . . . . +99 + 100) + 1012
=> D = \(-\frac{100\left(100+1\right)}{2}+101^2=101^2-50\cdot101=101\cdot51=5151\)
Vậy D = 5151
\(\frac{-4}{8}=\frac{x}{-10}=\frac{-7}{y}=\frac{z}{-24}\)* \(\frac{-4}{8}=\frac{x}{-10}=\frac{-7}{y}=\frac{z}{-24}\)
Ta có : \(-4\cdot\left(-10\right)=8\cdot x\Rightarrow x=5\)
\(5y=-7\cdot\left(-10\right)\Rightarrow y=14\)
\(\frac{-7}{14}=\frac{z}{-24}\Rightarrow-7\cdot\left(-24\right)=14\cdot z\Rightarrow z=12\)
* \(\frac{-5}{6}+\frac{8}{3}+\frac{29}{-6}\le x\le\frac{-1}{2}+2+\frac{5}{2}\)
\(\Rightarrow-3\le x\le4\)
=> x thuộc { -3 ; -2 ; -1 ; 0 ; 1 ; 2 ; 3 ; 4 }
~ Xin lỗi . Mình chỉ giúp được đến đây thôi :( ~
\(\frac{-5}{6}+\frac{8}{3}+\frac{29}{-6}\le x\le\frac{-1}{2}+2+\frac{5}{2}\)
\(\Rightarrow-3\le x\le4\)
\(\Rightarrow x\in\left\{-3;-2;-1;0;1;2;3;4\right\}\)
\(\left(\frac{-2}{3}-\frac{1}{2}\right):\frac{-1}{4}\le x\le\left(\frac{-5}{6}+\frac{9}{4}:\frac{-3}{2}\right)\cdot\frac{-13}{2}\)
\(\Rightarrow\frac{14}{3}\le x\le\frac{91}{6}\)
\(\Rightarrow\frac{28}{6}\le x\le\frac{91}{6}\)
\(\Rightarrow x\in\left\{\frac{28}{6};\frac{29}{6};...;\frac{90}{6};\frac{91}{6}\right\}\)
\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2014^2}\)
\(\Rightarrow A< 1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}\)
\(\Rightarrow A< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{2}{4}+...+\frac{1}{2013}-\frac{1}{2014}\)
\(\Rightarrow A< 1+1-\frac{1}{2014}\)
\(\Rightarrow A< 2-\frac{1}{2014}< 2\)
Vậy A < 2 (đpcm)
\(5^x+5^{x+2}=650;5^x.26=650;5^x=25;x=2\)
\(2^x+2^{x+3}=144;2^x.9=144;2^x=16;x=4\)
\(3^{x-1}+5.3^{x-1}=162;3^{x-1}.6=162;3^{x-1}=27;x=4\)
\(\left(x-5\right)^4=\left(x-5\right)^6\)
\(\rightarrow x-5=0\&x-5=1\) hoặc x - 5 = - 1
\(x-5=1;x=6;x-5=0;x=5;x-5=-1;x=4\)
\(\left(2^2:4\right).2^n=4;2^n=2^2;n=2\)
Bài 1:
a,(2x-15):13+51=64
=> (2x-15):13=64-51
=> (2x-15):13=13
=>(2x-15)=1
=> 2x =16
=> x = 8
Vậy: x= 8
Đặt A =\(\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{2017^2}\)
Có: \(\frac{1}{5^2}< \frac{1}{4\cdot5};\frac{1}{6^2}< \frac{1}{5\cdot6};...;\frac{1}{2017^2}< \frac{1}{2016\cdot2017}\)
\(\Rightarrow A< \frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+...+\frac{1}{2016\cdot2017}\)
\(\Rightarrow A< \frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{2016}-\frac{1}{2017}\)
\(\Rightarrow A< \frac{1}{4}-\frac{1}{2016}\)
\(\Rightarrow A< \frac{503}{2016}\)
Mà: \(\frac{1}{4}=\frac{1\cdot504}{4\cdot504}=\frac{504}{2016}\)
Lại có: \(\frac{503}{2016}< \frac{504}{2016}\)
\(\Rightarrow A< \frac{504}{2016}\Rightarrow A< \frac{1}{4}\left(đpcm\right)\)