K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2021

1)

A = \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+..+\frac{2}{99.101}\)

A = \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+..+\frac{1}{99}-\frac{1}{101}\)

A = \(\frac{1}{1}-\frac{1}{101}\)

A = \(\frac{100}{101}\)

Vậy A = \(\frac{100}{101}\)

B = \(\frac{5}{1.3}+\frac{5}{3.5}+...+\frac{5}{99.101}\)

B = \(\frac{5}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)\)

B = \(\frac{5}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)

B = \(\frac{5}{2}\left(\frac{1}{1}-\frac{1}{101}\right)\)

B = \(\frac{5}{2}.\frac{100}{101}\)

B = \(\frac{250}{101}\)

Vậy B = \(\frac{250}{101}\)

8 tháng 4 2021

2) 

Gọi ƯCLN ( 2n + 1 ; 3n + 2 ) = d ( d \(\in\)N* )

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}\Rightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\Rightarrow1⋮d}\)

\(\Rightarrow d=1\)

Vậy \(\frac{2n+1}{3n+2}\)là p/s tối giản

Gọi ƯCLN ( 2n+3 ; 4n+4 ) = d ( d \(\in\)N* )

\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n+3⋮d\\\left(4n+4\right):2⋮d\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\2n+2⋮d\end{cases}\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d}\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Vậy ...

11 tháng 5 2018

a,\(\frac{2}{1.3}+...\frac{2}{99.101}\)

\(=\frac{3-1}{1.3}+...+\frac{101-99}{99.101}\)

\(=\frac{3}{1.3}-\frac{1}{1.3}+...+\frac{101}{99.101}-\frac{99}{99.101}\)

\(=\frac{1}{1}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{101}\)

\(=\frac{1}{1}-\frac{1}{101}\)

\(\frac{100}{101}\)

11 tháng 5 2018

Mình cần gấp, ai trả lời nhanh nhất mình k cho

1 tháng 8 2018

LẠM DỤNG QUÁ NHIỀU

1 tháng 5 2019

\(M=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}\)

\(\Rightarrow M< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}\)

\(\Rightarrow M< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}\)

\(\Rightarrow M< 1-\frac{1}{99}< 1\)

Dễ thấy M > 0 nên 0 < M < 1

Vậy M không là số tự nhiên.

1 tháng 5 2019

\(S=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)

\(\Rightarrow S>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\) (50 số hạng \(\frac{1}{100}\))

\(\Rightarrow S>\frac{1}{100}.50=\frac{1}{2}\)

Vậy \(S>\frac{1}{2}\left(đpcm\right)\)

Câu 2:

b) ĐKXĐ: \(x\ne-1\)

Để \(\frac{3x+5}{x+1}\) là số nguyên thì \(3x+5⋮x+1\)

\(\Leftrightarrow3x+3+2⋮x+1\)

\(3x+3⋮x+1\)

nên \(2⋮x+1\)

\(\Leftrightarrow x+1\inƯ\left(2\right)\)

\(\Leftrightarrow x+1\in\left\{1;-1;2;-2\right\}\)

hay \(x\in\left\{0;-2;1;-3\right\}\)(tm)

Vậy: Khi \(x\in\left\{0;-2;1;-3\right\}\) thì \(\frac{3x+5}{x+1}\) là số nguyên

Câu 3:

a) ĐKXĐ: \(n\ne-3\)

Gọi \(d=ƯCLN\left(n+4;n+3\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}n+4⋮d\\n+3⋮d\end{matrix}\right.\Leftrightarrow n+4-n-3⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\)

\(\LeftrightarrowƯCLN\left(n+4;n+3\right)=1\)

hay \(\frac{n+4}{n+3}\) là phân số tối giản(đpcm)

b) Gọi \(e=ƯCLN\left(n+2;2n+5\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}n+2⋮e\\2n+5⋮e\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2n+4⋮e\\2n+5⋮e\end{matrix}\right.\Leftrightarrow2n+4-2n-5⋮e\)

\(\Leftrightarrow-1⋮e\Leftrightarrow e=1\)

hay \(ƯCLN\left(n+2;2n+5\right)=1\)

\(\Leftrightarrow\frac{n+2}{2n+5}\) là phân số tối giản

c) Gọi \(f=ƯCLN\left(2n+1;3n+1\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}2n+1⋮f\\3n+1⋮f\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6n+3⋮f\\6n+2⋮f\end{matrix}\right.\Leftrightarrow6n+3-6n-2⋮f\)

\(\Leftrightarrow1⋮f\Leftrightarrow f=1\)

\(\LeftrightarrowƯCLN\left(2n+1;3n+1\right)=1\)

hay \(\frac{2n+1}{3n+1}\) là phân số tối giản(đpcm)

Câu 1: Cho biểu thức: A=\(\frac{-5}{n-4}\)(n\(\inℤ\))a) Số ngyên n phải có điều kiện gì để A là phân sốb) Tìm các số nguyên n để A là một số nguyênCâu 2: a) Tìm x\(\inℤ\)biết: \(\frac{-1}{3}-1\le x\le\frac{1}{2}.3\)b) Tính tổng S=\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^8}+\frac{1}{3^9}\)Câu 3: Cho hai góc kề bù \(\widehat{xOy}\)và\(\widehat{yOt}\), biết \(\widehat{xOy}\)=\(50^0\). Vẽ tia Oz và Ot sao...
Đọc tiếp

Câu 1: Cho biểu thức: A=\(\frac{-5}{n-4}\)(n\(\inℤ\))

a) Số ngyên n phải có điều kiện gì để A là phân số

b) Tìm các số nguyên n để A là một số nguyên

Câu 2: 

a) Tìm x\(\inℤ\)biết: \(\frac{-1}{3}-1\le x\le\frac{1}{2}.3\)

b) Tính tổng S=\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^8}+\frac{1}{3^9}\)

Câu 3: Cho hai góc kề bù \(\widehat{xOy}\)\(\widehat{yOt}\), biết \(\widehat{xOy}\)=\(50^0\). Vẽ tia Oz và Ot sao cho \(\widehat{zOt}\)=\(80^0\)

a) Tính \(\widehat{yOt}\)

b) Tia Oy có phải là tia phân giác của \(\widehat{xOz}\)không? Vì sao?

Câu 4: 

Tìm các giá trị nguyên của x sao cho \(-1< \)\(\frac{x}{4}< \frac{1}{2}\)

Câu 5: Vẽ hai góc kề bù xOy và yOz sao cho xOy=60 độ

    a) Tính góc yOz

    b) Vẽ tia phân giác Ot của góc yOz.Tính góc xOt

    c) Vẽ tia Om là tia đối của tia Ot. Chứng tỏ Ox là tia phân giác của góc yOm

Câu 6:  M=\(\frac{1.2.4+2.4.8+4.8.16+8.16.32}{1.3.4+2.6.8+4.12.16+8.24.32}\)( bằng cách hợp lí)

 

 

0
13 tháng 4 2018

bài 2

a, TS= 54 . 107 -53=(53+1) .107-53=53.107+107-53=53.107+ 54

<=> 

\(\frac{TS}{MS}\)=\(\frac{54.107+54}{54.107+54}\)=1

13 tháng 4 2018

Bài 1 : 

\(a)\) Gọi \(ƯCLN\left(n+1;2n+3\right)=d\)

\(\Rightarrow\)\(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}}\)

\(\Rightarrow\)\(\left(2n+2\right)-\left(2n+3\right)⋮d\)

\(\Rightarrow\)\(2n+2-2n-3⋮d\)

\(\Rightarrow\)\(\left(-1\right)⋮d\)

\(\Rightarrow\)\(d\inƯ\left(-1\right)\)

Mà \(Ư\left(-1\right)=\left\{1;-1\right\}\)

\(\Rightarrow\)\(d\in\left\{1;-1\right\}\)

Do đó : 

\(ƯCLN\left(n+1;2n+3\right)=\left\{1;-1\right\}\)

Vậy \(\frac{n+1}{2n+3}\) là phân số tối giản với mọi n 

Chúc bạn học tốt ~ 

23 tháng 4 2020

B1. Ta có: A= \(\frac{4n-1}{2n+3}+\frac{n}{2n+3}=\frac{4n-1+n}{2n+3}=\frac{5n-1}{2n+3}\)

=> 2A = \(\frac{10n-2}{2n+3}=\frac{5\left(2n+3\right)-17}{2n+3}=5-\frac{17}{2n+3}\)

Để A là số nguyên <=> 2A là số nguyên <=> \(\frac{17}{2n+3}\in Z\)

<=> 17 \(⋮\)2n + 3 <=> 2n + 3 \(\in\)Ư(17) = {1; -1; 17; -17}

Lập bảng:

 2n + 3 1 -1 17 -17
  n -1 -2 7 -10

Vậy ....

23 tháng 4 2020

Bài 2:

Gọi d là ƯCLN (7n-1; 6n-1) (d thuộc N*)

\(\Rightarrow\hept{\begin{cases}7n-1⋮d\\6n-1⋮d\end{cases}\Rightarrow\hept{\begin{cases}6\left(7n-1\right)⋮d\\7\left(6n-1\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}42n-6⋮d\\42n-7⋮d\end{cases}}}\)

=> 42n-7-42n+6 chia hết cho d

=> -1 chia hết cho d

mà d thuộc N* => d=1

=> ƯCLN (7n-1; 6n-1)=1

=> đpcm

19 tháng 4 2018

a) ta có:

\(\frac{n+1}{2n+3}\)là phân số tối giản thì:

\(\left(n+1;2n+3\right)=d\)

Điều Kiện;d thuộc N, d>0

=>\(\hept{\begin{cases}2n+3:d\\n+1:d\end{cases}}=>\hept{\begin{cases}2n+3:d\\2n+2:d\end{cases}}\)

=>2n+3-(2n+2):d

2n+3-2n-2:d

hay 1:d

=>d=1

Vỵ d=1 thì.....

19 tháng 4 2018

Bài 2 :

Để A = (n+2) : (n-5) là số nguyên thì n+2 phải chia hết cho n-5

Mà n-5 chia hết cho n-5

=> (n+2) - (n-5) chia hết cho n-5

=> (n-n) + (2+5) chia hết cho n-5

=> 7 chia hết cho n-5

=> n-5 thuộc Ư(5) = { 1 : -1 ; 7 ; -7 }

Ta có bảng giá trị

n-51-17-7
n6412-2
A8-620
KLTMĐKTMĐKTMĐKTMĐK

Vậy với n thuộc { -2 ; 4 ; 6 ; 12 } thì A là số nguyên