Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/b = c/d
=> a/b + 1 = c/d + 1
=> a/b + b/b = c/d + d/d
=> a+b/b = c+d/d
a/b=c/d =k
suy ra a=b.k ; c=d.k
a+b/b=b.k+b.1=b(k+1)=k+1
c+d/d=d.k+d.1=d.(k+1)=k+1
suy ra a+b/b = c+d/d
phần b tương tự nha !!!
1/
a/ \(\frac{x}{-3,7}=\frac{-2,5}{0,25}\)
=> \(0,25x=\left(-2,5\right)\left(-3,7\right)\)
=> \(0,25x=9,25\)
=> \(x=\frac{9,25}{0,25}\)
=> \(x=37\)
b/ Bạn coi lại đề.
2/
a/ \(\frac{a}{b}=\frac{c}{d}\)<=> \(\frac{a+b}{b}=\frac{c+d}{d}\)
Ta có \(\frac{a}{b}=\frac{c}{d}\)
=> \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)(tính chất tỉ lệ thức)
=> \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)(tính chất dãy tỉ số bằng nhau)
Ta lại có \(\frac{a+b}{c+d}=\frac{b}{d}\)
=> \(\frac{a+b}{b}=\frac{c+d}{d}\)(tính chất tỉ lệ thức) (đpcm)
ta có :\(\frac{a}{b}=\frac{c}{d}->\frac{a}{c}=\frac{b}{d}\)
áp dụng t/c của dãy t/s = nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}->\frac{a}{c}=\frac{a+c}{b+d}=\frac{a}{a+b}=\frac{c}{c+d}\left(dpcm\right)\)
a) a/b = c/d suy ra a/c = b/d = a+b/c+d
từ a/c = a+b/c+d suy ra a+b/a = c+d/c
b) a/b = c/d suy ra a/c = b/d = a-b/c-d
từ a/c = a-b/c-d suy ra a-b/a = c-d/c
a)Đặt a/b=c/d=k
=>a=bk
c=dk
Vế trái : a+b/a=bk+b/bk
=b(k+1)/bk=k+1/k
Vế phải: c+d/c=ck+c/ck
=c(k+1)/ck=k+1/k
Vì vế trái = vế phải
nên a+b/a=c+d/c
b) Đặt a/b=cd=k
=>a=bk
c=dk
Vế trái : a-b/a=bk-b/bk
=b(k-1)/bk=k-1/k
Vế phải: c-d/c=ck-c/ck
=c(k-1)/ck=k-1/k
Vì vế trái = vế phải
nên a-b/a=c-d/c
a)\(\frac{a}{b}=\frac{c}{d}->\frac{a}{c}=\frac{b}{d}\) b)\(\frac{a}{b}=\frac{c}{d}->\frac{a}{c}=\frac{b}{d}\) c)\(\frac{a}{b}=\frac{c}{d}->\frac{a}{c}=\frac{b}{d}\)
ap dung t.c day ti so bang nhau ta co ap dung t.c day ti so bang nhau ta co ap dung t.c day ti so bang nhau ta co
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\) \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\) \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)
--> \(\frac{b}{d}=\frac{a+b}{c+d}->\frac{a+b}{b}=\frac{c+d}{d}\) ->\(\frac{a-b}{c-d}=\frac{b}{d}->\frac{a-b}{b}=\frac{c-d}{d}\) -> \(\frac{a}{c}=\frac{a+b}{c+d}->\frac{a+b}{a}=\frac{c+d}{c}\)
d)\(\frac{a}{b}=\frac{c}{d}->\frac{a}{c}=\frac{b}{d}\) e) \(\frac{a}{b}=\frac{c}{d}->\frac{a}{c}=\frac{b}{d}\) f) \(\frac{a}{b}=\frac{c}{d}->\frac{a}{c}=\frac{b}{d}\)
ap dung t.c day ti so bang nhau ta co ap dung t.c day ti so bang nhau ta co ap dung t.c day ti so bang nhau ta co
\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\) \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\) \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)
--> \(\frac{a-b}{c-d}=\frac{a}{c}->\frac{a-b}{a}=\frac{c-d}{c}\) -->\(\frac{a}{c}=\frac{a+b}{c+d}->\frac{a}{a+b}=\frac{c}{c+d}\) -->\(\frac{a}{c}=\frac{a-b}{c-d}->\frac{a}{a-b}=\frac{c}{c-d}\)
ta có :a/b=c/d
=>a/b+1=c/d+1
=>a/b+b/b=c/d+d/d
=>a+b/b=c+d/d
=>dpcm
ta có :a/b=c/d
=>a/b-1=c/d-1
=>a/b-b/b=c/d-d/d
=>a-b/b=c-d/d
=>dpcm
tick cho mik nha bạn !
\(\frac{a+b}{b}=1\frac{a}{b}\)
\(\frac{c+d}{d}=1\frac{c}{d}\)
Vì \(\frac{c}{d}=\frac{a}{b}\)nên\(1\frac{c}{d}=1\frac{a}{b}\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}\)
\(\RightarrowĐPCM\)
\({a \over b}={c \over d} => ad=bc \)
\({a+b \over b}={c+d \over d} \) chỉ khi (a+b)d = (c+d)b <=> ad+bd=bc+bd mà ad=bc => ad+bd=bc+bd => \({a+b \over b}={c+d \over d}\)
mấy câu sau làm tương tự chủ yếu là nhân chéo