K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2017

a) Gọi (P) là mặt phẳng chứa hai đường thẳng đã cho. Mặt phẳng (P) cắt mặt cầu S(O;r) theo một đường tròn tâm I, là hình chiếu vuông góc của O lên mặt phẳng (P).

Xét hai tam giác MAD và MCB có góc chung nên hai tam giác đó đồng dạng.

Vì vậy: => MA.MB = MC.MD.

b) Đặt MO = d, ta có Oi vuông góc với (P) và ta có:

MO2= MI2 = OI2 và OA2 = OI2 + IA2

Hạ IH vuông góc AB, ta có H là trung điểm của AB.

Ta có MA = MH - HA; MB = MH + HB = MH + HA.

Nên MA.MB =

MH2 – HA2 = (MH2 + HI2) – (HA2 + IH2)

= MI2 – IA2 = ( MI2 + OI2) – (IA2 + OI2)

= MO2 – OẢ2

= d2 – r2

Vậy MA.MB = d2 – r2


31 tháng 10 2017

Giải bài 5 trang 49 sgk Hình học 12 | Để học tốt Toán 12

Hai đường thẳng MAB và MCD giao nhau xác định một mặt phẳng (P). Mặt phẳng (P) cắt mặt cầu theo giao tuyến là đường tròn (C), ngoại tiếp tứ giác phẳng ABCD.

Giải bài 5 trang 49 sgk Hình học 12 | Để học tốt Toán 12

Xét ΔMAC và ΔMDB có:

Giải bài 5 trang 49 sgk Hình học 12 | Để học tốt Toán 12

⇒ MA.MB = MC.MD (đpcm).

3 tháng 4 2017

Theo tính chất của mặt cầu, ta có AI và AM là hai tiếp tuyến với cầu kẻ từ A, cho nên AI = AM, tương tự BI =BM. Từ đó hai tam giác ABI và ABM bằng nahau (c.c.c), cho nên các góc tương ứng bằng nhau, tức


20 tháng 5 2017

Mặt cầu, mặt nón tròn xoay và mặt trụ tròn xoay

Vậy \(S=4\pi r^2=4\pi\left(\dfrac{a\sqrt{2}}{2}\right)^2=2\pi a^2\)\(V=\dfrac{4}{3}\pi r^3=\dfrac{4}{3}\pi\left(\dfrac{a\sqrt{2}}{2}\right)^3=\dfrac{1}{3}\pi a^3\sqrt{2}\)

27 tháng 9 2018

Giải bài 6 trang 49 sgk Hình học 12 | Để học tốt Toán 12

* Do mặt cầu S(O; r) tiếp xúc với mp (P) tại I nên: OI ⊥ (P) ⇒ OI ⊥ IA

Suy ra, AI là tiếp tuyến của mặt cầu đã cho tại điểm I.

Ta có AM và AI là hai tiếp tuyến cắt nhau tại A của mặt cầu nên:

AM = AI ( tính chất hai tiếp tuyến cắt nhau)

* Tương tự có BM = BI.

* Xét hai tam giác AMB và tam giác AIB có:

AM = AI

BM = BI

AB chung

Suy ra: ∆ AMB = ∆ AIB ( c.c.c)

Giải bài 6 trang 49 sgk Hình học 12 | Để học tốt Toán 12

 

20 tháng 5 2017

Mặt cầu, mặt nón tròn xoay và mặt trụ tròn xoay

Mặt cầu, mặt nón tròn xoay và mặt trụ tròn xoay

22 tháng 5 2017

Ôn tập chương III

Ôn tập chương III

20 tháng 5 2017

Mặt cầu, mặt nón tròn xoay và mặt trụ tròn xoay

22 tháng 7 2019

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Tam giác ADC vuông tại A nên AD 2 = DC 2 - AC 2  (1)

Tam giác ABC vuông tại A nên BC 2 = AC 2 + AB 2  (2)

Từ (1) và (2) ta suy ra AD 2 + BC 2 = DC 2 + AB 2  (3)

Ta lại có:

AC 2 = DC 2 - AD 2 và BD 2 = AD 2 + AB 2  (4)

DC 2 = 4 r 2 - h 2 ,   AB 2 = 4 h 2  (5)

Từ (4) và (5) ta có:

AC 2 + BD 2 = DC 2 + AB 2 = 4 r 2 - h 2 + 4 h 2 = 4 r 2  (6)

Từ (3) và (6) ta có:  AD 2 + BC 2  =  AC 2 + BD 2  (không đổi)

22 tháng 5 2017

Ôn tập chương III