Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. có góc B cộng góc C bằng 180 độ ( tiế vậy nó nội tip tuyến ĐT) vậy nó nội tiếp
2. xét 2 tam giác ABE và tam giác AFB chứng minh nó đồng dạng (g,g), vì góc A chung, góc F bằng góc ABE = 1/2 Sđ cung BE. rồi lập tì số đồng dạng là được.
3. Chưa làm được. nếu bạn làm được rối thông tin cho mình nhé. cảm ơn
1. Vì BO vuông góc với BA => góc ABO = 90 độ
Vi CO vuông góc với CA => góc ACO = 90 độ
Xét tứ giác ABOC có : Góc ABC = 90 độ, Góc ACO = 90 độ
mà 2 góc trên đối nhau và có tổng = 180 độ
=> tứ giác ABOC là tứ giác nội tiếp đường tròn.
Nối A với O, ta được tam giác ABO vuông tại B.
Vẽ trung tuyến BI của tam giác ABO => IO = IA = IB
=> I là tâm đường tròn ngoại tiếp tứ giác ABOC.
2. Câu này câu hỏi là gì vậy?
3,
1: góc ABO+góc ACO=180 độ
=>ABOC nội tiếp đường tròn đường kính OA
Tâm là trung điểm của OA
2: Xét ΔABE và ΔAFB có
góc ABE=góc AFB
góc BAE chung
=>ΔABE đồng dạng với ΔAFB
=>AB/AF=AE/AB
=>AB^2=AE*AF