K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2015

Gọi MH là đường cao kẻ từ M của tam giác MBC, AK là đường cao kẻ từ A của tam giác ABC.

Do MH vuông BC và AK vuông BC nên MH // AK

=> Theo Talet: \(\frac{ME}{AE}=\frac{MH}{AK}\)

Lại có: \(\frac{S_{MBC}}{S_{ABC}}=\frac{\frac{1}{2}.MH.BC}{\frac{1}{2}.AK.BC}=\frac{MH}{MK}\)

Tương tự ta có: \(\frac{MF}{BF}=\frac{S_{MAC}}{S_{ABC}};\frac{MD}{CD}=\frac{S_{MAB}}{S_{ABC}}\)

Cộng theo vế: \(\frac{ME}{AE}+\frac{MF}{BF}+\frac{MD}{CD}=\frac{S_{MBC}+S_{MCA}+S_{MAB}}{S_{ABC}}=\frac{S_{ABC}}{S_{ABC}}=1\)

25 tháng 8 2017

A B C C, G M B, C, H D

TA CÓ

\(\frac{MC,}{GC,}=\frac{S\Delta AMB}{S\Delta AGB}\left(1\right)\)

\(\frac{MB,}{GB,}=\frac{S\Delta AMC}{S\Delta AGC}\left(2\right)\)

DỰNG GH VÀ MD VUÔNG GÓC VỚI BC

AD ĐỊNH LÍ TA LÉT

=>\(\frac{MD}{GH}=\frac{MA,}{GA,}\)

MẶT KHÁC \(\frac{MD}{GH}=\frac{S\Delta BMC}{S\Delta BGC}\)

=> \(\frac{MA,}{GA,}=\frac{S\Delta BMC}{S\Delta BGC}\left(3\right)\)

TỪ 1 ,2,3 

=> \(\frac{MA,}{GA,}+\frac{MB,}{GB,}+\frac{MC,}{GC,}=\frac{S\Delta AMB+S\Delta BMC+S\Delta AMC}{\frac{1}{3}S\Delta ABC}=\frac{3SABC}{SABC}=3\)

28 tháng 1 2019

tam giác đồng  dạng đi bà

nói rõ đi bà 

11 tháng 10 2018

A B C M D E F I K L G N

Gọi G là đỉnh thứ tư của hình bình hành KMIG. Giao điểm của MG và IK là N.

Do tứ giác KMIG là hình bình hành nên MI = KG và ^MKG + ^KMI = 1800 hay ^MKG + ^EMD = 1800

Ta có: \(\frac{MI}{BC}=\frac{MK}{AC}\). Do MI = KG nên \(\frac{KG}{BC}=\frac{MK}{AC}\)

Xét tứ giác CDME có: ^CDM = ^CEM = 900 => ^ECD + ^EMD = 1800. Mà ^MKG + ^EMD = 1800 (cmt)

Nên ^ECD = ^MKG hay ^ACB = ^MKG 

Xét \(\Delta\)ABC và \(\Delta\)MGK có: \(\frac{GK}{BC}=\frac{MK}{AC}\); ^ACB = ^MKG => \(\Delta\)ABC ~ \(\Delta\)MGK (c.g.c)

=> ^BAC = ^GMK và \(\frac{MG}{AB}=\frac{MK}{AC}\)

Lại có: \(\frac{MK}{AC}=\frac{ML}{AB};\frac{MG}{AB}=\frac{MK}{AC}\)(cmt) => \(\frac{ML}{AB}=\frac{MG}{AB}\)=> ML = MG

Ta thấy: Tứ giác AFME có ^AFM = ^AEM = 900 => ^FAE + ^FME = 1800 . Mà ^FAE = ^BAC = ^GMK (cmt)

Nên ^GMK + ^FME = 1800 => G;M;F thẳng hàng. Hay G;M;I thẳng hàng

Mặt khác: N là trung điểm KI và MG (T/c hbh) => Điểm M nằm trên trung tuyến LN của \(\Delta\)IKL (1)

MG = ML; MN = 1/2.MG (cmt) => MN=1/2.ML (2)

Từ (1) và (2) => M là trọng tâm của \(\Delta\)IKL (đpcm).

18 tháng 7 2019

Từ A dựng đường cao AH, M dựng đường cao MD ( H, D thuộc BC ) 

\(\left(S_{MAB};S_{MBC};S_{MAC}\right)\rightarrow\left(S_1;S_2;S_3\right)\)

\(\Delta HAA_1\) có \(AH//MD\left(\perp BC\right)\) áp dụng Ta-let \(\Rightarrow\)\(\frac{AA_1}{MA_1}=\frac{AH}{MD}=\frac{\frac{1}{2}AH.BC}{\frac{1}{2}MD.BC}=\frac{S_{ABC}}{S_2}\)

\(\Rightarrow\)\(\frac{AA_1}{MA_1}-1=\frac{MA}{MA_1}=\frac{S_{ABC}}{S_2}-1=\frac{S_1+S_3}{S_2}\)

Tương tự( dựng các đường cao hạ từ B, M và C, M ) ta cũng có: \(\frac{MB}{MB_1}=\frac{S_1+S_2}{S_3};\frac{MC}{MC_3}=\frac{S_2+S_3}{S_1}\)

Do đó: \(P=\frac{MA}{MA_1}.\frac{MB}{MB_1}.\frac{MC}{MC_1}=\frac{\left(S_1+S_2\right)\left(S_2+S_3\right)\left(S_3+S_1\right)}{S_1S_2S_3}\)

\(\ge\frac{2\sqrt{S_1S_2}.2\sqrt{S_2S_3}.2\sqrt{S_3S_1}}{S_1S_2S_3}=\frac{8\sqrt{\left(S_1S_2S_3\right)^2}}{S_1S_2S_3}=8\)

Dấu "=" xảy ra \(\Leftrightarrow\) tam giác ABC là tam giác đều và có 3 đường trung trực đồng quy tại M

11 tháng 1 2019

A B C M N O E F D H R Q P G

a) Dễ thấy: ^CMN = 900 - ^ACB/2;  ^AOQ = ^OAB + ^OBA = 900 - ^ACB/2 => ^CMN = ^AOQ

=> Tứ giác AOQM nội tiếp => ^AQO = ^AMO = 900 (1)

Tương tự ta có: Tứ giác BOPN nội tiếp => ^BPO = ^BNO = 900 (2)

Từ (1) và (2) => ^AQO = ^BPO hay ^AQB = ^BPA => Tứ giác ABPQ nội tiếp (đpcm).

b) Xét \(\Delta\)AQB vuông tại Q: E là trung điểm cạnh AB => ^EQB = ^EBQ = ^ABC/2 = ^QBC 

=> QE // BC (2 góc so le trong bằng nhau). Mà EF là đường trung bình tam giác ABC nên EF // AB

Do đó 3 điểm E,Q,F thẳng hàng (Tiên đề Ơ-clit) (đpcm).

c) Sửa điểm E thành điểm R cho đỡ trùng.

+) C/m : ^BAC = 900 => AR = AC ?

Chứng minh tương tự câu b ta có: PE //AC, gọi G là hình chiếu của O trên cạnh AB

Do ^BAC = 900 => AB vuông góc AC. Từ đó: AC // OG // PE. Áp dụng hệ quả ĐL Thales thì có:

\(\frac{r}{AD}=\frac{OG}{AD}=\frac{EG}{EA}=\frac{PO}{PA}=\frac{ON}{AR}=\frac{r}{AR}\)=> AD=AR (đpcm).

+) C/m : AR = AD => ^BAC = 900 ?

Lại theo hệ quả ĐL Thales, ta có các tỉ số: \(\frac{OG}{AD}=\frac{r}{AR}=\frac{ON}{AR}=\frac{PO}{PA}=\frac{EO}{ED}\)

=> OG // AC (ĐL Thales đảo). Mà OG vuông góc AB => AB vuông  góc AC hay ^BAC = 900 (đpcm).

d) Hệ thức cần chứng minh \(\Leftrightarrow r\left(AB+BC+CA\right)=OC\left(MN+2PQ\right)\)

\(\Leftrightarrow S_{ABC}=S_{CMON}+2S_{CPOQ}\Leftrightarrow2S_{AOB}=2S_{CPOQ}\Leftrightarrow S_{AOB}=S_{CPOQ}\) 

\(\Leftrightarrow OG.AB=OC.PQ\Leftrightarrow\frac{PQ}{AB}=\frac{OG}{OC}\Leftrightarrow\frac{OQ}{OA}=\frac{OM}{OC}\)(Do tứ giác ABPQ nội tiếp)

\(\Leftrightarrow\Delta AOQ~\Delta COM\left(g.g\right)\Leftrightarrow\hept{\begin{cases}\widehat{AQO}=\widehat{CMO}\left(=90^0\right)\\\widehat{OAQ}=\widehat{OCM}\left(=\widehat{OMQ}\right)\end{cases}}\)(Điều này hiển nhiên đúng)

Vậy hệ thức cần chứng minh là đúng => ĐPCM.