Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Mafia - Toán lớp 9 - Học toán với OnlineMath
Em có thể tham khảo tại đây nhé.
Mai.T.LoanHồng Phúctrần thị diệu linhVy Lan LêNguyễn Ngọc Lộc Cuc PhamNguyễn Lê Phước ThịnhLinh NguyenAkai HarumaMysterious Person
a) Vì MA,MB là tiếp tuyến \(\Rightarrow MA=MB\) và MO là phân giác \(\angle AMB\Rightarrow\Delta MAB\) cân tại M \(\Rightarrow OM\bot AB\)
Xét \(\Delta IAC\) và \(\Delta IBA:\) Ta có: \(\left\{{}\begin{matrix}\angle IAC=\angle IBA\\\angle BIAchung\end{matrix}\right.\)
\(\Rightarrow\Delta IAC\sim\Delta IBA\left(g-g\right)\Rightarrow\dfrac{IA}{IB}=\dfrac{IC}{IA}\Rightarrow IA^2=IB.IC\)
b) Vì \(IA=IM\Rightarrow IM^2=IB.IC\Rightarrow\dfrac{IM}{IB}=\dfrac{IC}{IM}\)
Xét \(\Delta IMC\) và \(\Delta IBM:\) Ta có: \(\left\{{}\begin{matrix}\dfrac{IM}{IB}=\dfrac{IC}{IM}\\\angle BIMchung\end{matrix}\right.\)
\(\Rightarrow\Delta IMC\sim\Delta IBM\left(c-g-c\right)\Rightarrow\angle IMC=\angle IBM=\angle BDC\)
a. OM là đường trung trực của AB
⇒AM⊥AB tại H
xét ΔIAC và ΔIBA có
∠I chung
∠A=∠B=90
⇒ΔIAC ∼ ΔIBA (g.g)
⇒IA2=IB.IC
a) Vì MA,MB là tiếp tuyến \(\Rightarrow MA=MB\) và MO là phân giác \(\angle AMB\)
\(\Rightarrow OM\bot AB\)
Xét \(\Delta ICA\) và \(\Delta IAB:\) Ta có: \(\left\{{}\begin{matrix}\angle IAC=\angle IBA\\\angle BIAchung\end{matrix}\right.\)
\(\Rightarrow\Delta ICA\sim\Delta IAB\left(g-g\right)\Rightarrow\dfrac{IC}{IA}=\dfrac{IA}{IB}\Rightarrow IA^2=IB.IC\)
b) Ta có: \(IM^2=IA^2=IB.IC\Rightarrow\dfrac{IM}{IB}=\dfrac{IC}{IM}\)
Xét \(\Delta ICM\) và \(\Delta IMB:\) Ta có: \(\left\{{}\begin{matrix}\dfrac{IM}{IB}=\dfrac{IC}{IM}\\\angle BIMchung\end{matrix}\right.\)
\(\Rightarrow\Delta ICM\sim\Delta IMB\left(c-g-c\right)\Rightarrow\angle IMC=\angle IMB=\angle BDC\)
\(\Rightarrow AM\parallel BD\)
c) Xét \(\Delta ABM\),có I là trung điểm MA,H là trung điểm AB
\(\Rightarrow IH\) là đường trung bình \(\Delta ABM\)\(\Rightarrow IH\parallel AB\)
\(\Rightarrow\angle CIH=\angle IBM=\angle CAH\Rightarrow CHAI\) nội tiếp
\(\Rightarrow\angle ACI=\angle AHI=\angle ABM=\angle BAM=\angle ABD\) \((AM\parallel BD)\)
\(=\angle ACD\)
\(\Rightarrow CA\) là phân giác