Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : xOy va yOy' la hai goc ke nhau
=) xOy = 180 do
=> yOy' + xOy = xOy'
=> yOy' = xOy' - xOy =180 - 120 = 60 do
vay yOy' = 60 do
\(\frac{n+5}{n+1}=\frac{n+1+4}{n+1}=\frac{n+1}{n+1}+\frac{4}{n+1}=1+\frac{4}{n+1}\)
Để \(\frac{4}{n+1}\in N\) thì \(n+1\in\text{Ư}\left(4\right)=\left\{1;2;4\right\}\)
- \(n+1=1\Rightarrow n=0\)
- \(n+1=2\Rightarrow n=1\)
- \(n+1=4\Rightarrow n=3\)
Vậy \(n\in\left\{0;1;3\right\}\)
b: \(\widehat{MRS}=180^0-130^0=50^0\)
\(\widehat{ARN}=180^0-130^0=50^0\)
\(\widehat{MRN}=180^0-50^0-50^0=80^0\)
Ta có : \(\dfrac{1}{2}xOy=\dfrac{1}{7}yOz\Rightarrow xOy=\dfrac{1}{7}yOz:\dfrac{1}{2}=\dfrac{2}{7}yOz\)
Ta lại có : góc xOy + góc yOz = 180 độ( hai góc kề bù )
\(\Rightarrow\) \(\dfrac{2}{7}yOz\) + góc yOz = 180 độ
\(\Rightarrow\)yOz(\(\dfrac{2}{7}+1\)) = 180 độ
\(\Rightarrow\)\(\dfrac{9}{7}yOz\)= 180 độ
\(\Rightarrow\)yOz = 180 : \(\dfrac{9}{7}\)=180 .\(\dfrac{7}{9}\)= 140 độ
Khi đó : xOy = 140 . \(\dfrac{2}{7}\)= 40 độ
a: Trên hình có 3 góc, đó là các góc xOy;yOz; xOz
b: Trên cùng một nửa mặt phẳng bờ chứa tia Ox, ta có: \(\widehat{xOy}< \widehat{xOz}\)
nên tia Oy nằm giữa hai tia Ox và Oz
mà \(\widehat{xOy}=\dfrac{1}{2}\widehat{xOz}\)
nên Oy là phân giác của góc xOz
c: \(\widehat{zOx'}=180^0-120^0=60^0\)
3/ Chu vi hình chữ nhật:
\(\left(\dfrac{1}{4}+\dfrac{3}{10}\right)\cdot2=\dfrac{11}{10}\) (chưa biết đơn vị)
Diện tích hình chữ nhật:
\(\dfrac{1}{4}\cdot\dfrac{3}{10}=\dfrac{11}{20}\) (chưa biết đơn vị)
Giải:
Có thể vẽ hình như sau:
a) Đỉnh của góc là A, một cạnh là AB, cần vẽ tia AC.
b) Đỉnh của góc là C, một cạnh là Cx, cần vẽ tia Cz.
c) Đỉnh của góc là D, một cạnh là Dy, cần vẽ tia Dx.
d) Đỉnh của góc là F, Một cạnh là EF, cần vẽ tia Fy.
a) x O y ^ < b A c ^
b) x O y ^ < z D t ^
c) x O y ^ < b A c ^ < z D t ^