Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đường tròn c: Đường tròn qua B_1 với tâm O Góc α: Góc giữa O, A, P Góc α: Góc giữa O, A, P Góc β: Góc giữa P, B, O Góc β: Góc giữa P, B, O Đoạn thẳng i: Đoạn thẳng [P, C] Đoạn thẳng k: Đoạn thẳng [B, P] Đoạn thẳng l: Đoạn thẳng [P, A] Đoạn thẳng m: Đoạn thẳng [B, C] Đoạn thẳng n: Đoạn thẳng [E, B] Đoạn thẳng p: Đoạn thẳng [O, B] Đoạn thẳng q: Đoạn thẳng [O, A] Đoạn thẳng r: Đoạn thẳng [D, A] Đoạn thẳng s: Đoạn thẳng [A, B] O = (5.16, 0.8) O = (5.16, 0.8) O = (5.16, 0.8) O = (5.16, 0.8) O = (5.16, 0.8) O = (5.16, 0.8) O = (5.16, 0.8) P = (0.16, 5.34) P = (0.16, 5.34) P = (0.16, 5.34) P = (0.16, 5.34) P = (0.16, 5.34) P = (0.16, 5.34) P = (0.16, 5.34) Điểm A: Giao điểm đường của c, f Điểm A: Giao điểm đường của c, f Điểm A: Giao điểm đường của c, f Điểm A: Giao điểm đường của c, f Điểm A: Giao điểm đường của c, f Điểm A: Giao điểm đường của c, f Điểm A: Giao điểm đường của c, f Điểm B: Giao điểm đường của c, g Điểm B: Giao điểm đường của c, g Điểm B: Giao điểm đường của c, g Điểm B: Giao điểm đường của c, g Điểm B: Giao điểm đường của c, g Điểm B: Giao điểm đường của c, g Điểm B: Giao điểm đường của c, g Điểm C: Giao điểm đường của c, h Điểm C: Giao điểm đường của c, h Điểm C: Giao điểm đường của c, h Điểm C: Giao điểm đường của c, h Điểm C: Giao điểm đường của c, h Điểm C: Giao điểm đường của c, h Điểm C: Giao điểm đường của c, h Điểm D: Giao điểm đường của c, i Điểm D: Giao điểm đường của c, i Điểm D: Giao điểm đường của c, i Điểm D: Giao điểm đường của c, i Điểm D: Giao điểm đường của c, i Điểm D: Giao điểm đường của c, i Điểm D: Giao điểm đường của c, i Điểm E: Giao điểm đường của f, j Điểm E: Giao điểm đường của f, j Điểm E: Giao điểm đường của f, j Điểm E: Giao điểm đường của f, j Điểm E: Giao điểm đường của f, j Điểm E: Giao điểm đường của f, j Điểm E: Giao điểm đường của f, j
a) Do BC // AP nên \(\widehat{EPD}=\widehat{DCB}\) (Hai góc so le trong)
mà \(\widehat{DCB}=\widehat{EBP}\) (Góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn cung BD)
nên \(\widehat{EPD}=\widehat{EPB}\)
Suy ra \(\Delta PED\sim\Delta BEP\left(g-g\right)\)
b) Ta thấy ngay \(\widehat{EAD}=\widehat{EBA}\) (Góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn cung AD)
Suy ra \(\Delta AED\sim\Delta BEA\left(g-g\right)\)
c) Do \(\Delta PED\sim\Delta BEP\Rightarrow\frac{PE}{BE}=\frac{ED}{PE}\Rightarrow PE^2=ED.EB\)
\(\Delta AED\sim\Delta BEA\Rightarrow\frac{AE}{BE}=\frac{ED}{AE}\Rightarrow AE^2=BE.ED\)
Vậy nên AE = EP
a: Xét ΔEAB và ΔEBD có
góc EAB=góc EBD
góc AEB chung
=>ΔEAB đồng dạng với ΔEBD
b: ΔEAB đồng dạng với ΔEBD
=>EB^2=EA*ED
Xét ΔEPD và ΔEAP có
góc EPD=góc EAP
góc PED chung
=>ΔEPD đồng dạng với ΔEAP
=>EP^2=ED*EA=EB^2
=>EP=EB
=>AE là trung tuyến của ΔPAB
â) Xét tứ giác PAOB , co :
\(\widehat{A}=90^o\) ( PA là tiếp tuyến )
\(\widehat{B}=90^o\)( PB là tiếp tuyến )
\(\widehat{A}+\widehat{B}=90^o+90^o=180^o\)
Vay : tứ giác PAOB nội tiếp ( vì có tổng số đo hai góc đối diện bằng 180o )
b) Xét \(\Delta PAEva\Delta PCA,co:\)
\(\widehat{P}\) là góc chung
\(\widehat{ACE}=\widehat{EAP}\) ( góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung cùng chắn một cung )
Do đó : \(\Delta PAE~\Delta PCA\)( g - g )
\(=>\frac{PA}{PE}=\frac{PC}{PA}\)
\(=>PA^2=PE.PC\)
c)
c, ta có góc APC=PCB (slt vì BC//PA)
mà góc PCB=PBE =1/2sđcungBE ( góc nội tiếp chắn cung BE và góc tạo bởi tia tiếp tuyến và dây cung BE)
suy ra góc APC=PBE
xét hai tam giác PIE và BIP có
góc I chung
góc IBE=IBP(cmt)
suy ra hai tam giác đó đồng dạng
suy ra PI/BI=IE/PI
suy ra PI^2=BI*IE (1)
xét hai tam giác AIE và BIA có
góc I chung
góc IAE=ABI=1/2sđ cung AE ( góc nội tiếp chắn cung AE và góc tạo bởi tia tiếp tuyến và dây cung AE)
suy ra hai tam giác đó đồng dạng
suy ra AI/BI=EI/AI
suy ra AI^2=BI*EI (2)
từ 1 và 2 suy ra PI=AI( đpcm)
Xét ΔBAC và ΔBDA có
góc BAC=góc BDA
góc ABC chung
=>ΔBAC đồng dạng với ΔBDA
=>BA/BD=BC/BA
=>BA^2=BD*BC=PB^2
=>BP/BC=BD/BP
=>ΔBPD đồng dạng với ΔBCP
=>góc BPC=góc BDP
=>góc BPC=góc PEF
=>EF//AP
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
O A B C D M E T I H K J O B C A D E P Q N Hình 1 Hình 2
a) Xét đường tròn (O): 2 tiếp tuyến AB, AC => AB=AC (T/c 2 tiếp tuyến cắt nhau) => OA là trung trực của BC (Vì OB=OC)
=> OA vuông góc BC. Mà BD//AO nên BC vuông góc BD (Qh song song vuông góc) => CD là đường kính của (O)
Do đó: ^CED=900 (Góc nt chắn nửa đường tròn) hoặc ^CEA=900 => \(\Delta\)ACE vuông tại E
Xét \(\Delta\)ACE: Vuông đỉnh E, trung tuyến EM => ME = MC. Từ đó có: \(\Delta\)MEO = \(\Delta\)MCO (c.c.c)
=> ^MEO = ^MCO (Cặp góc tương ứng). Mà ^MCO=900 nên ^MEO=900 => ME là tiếp tuyến của (O) (đpcm).
b) Gọi K là giao điểm của OE với đoạn BC, H là giao điểm của OA và BC, J là giao điểm của EM với OA.
Xét \(\Delta\)OTJ có: TH vuông góc OJ (Do BC vuông góc OA); OE vuông góc TJ (Do EM là tiếp tuyến (O))
TH cắt OE tại K nên K là trực tâm \(\Delta\)OTJ => JK vuông góc OT (*)
Qua hệ thức lượng trong tam giác vuông, dễ có: R2 = OE2 = OB2 = OH.OA => \(\Delta\)OHE ~ \(\Delta\)OEA (c.g.c)
=> ^OEH = ^OAE hay ^KEH = ^OAI (1)
Dễ thấy tứ giác HKEJ nội tiếp đường tròn đường kính KJ => ^KEH = ^HJK (2)
Từ (1) và (2) suy ra: ^OAI = ^HJK => JK // AI (2 góc đồng vị bằng nhau) (**)
Từ (*) và (**) suy ra: AI vuông góc OT (Qh song song vuông góc)
Xét trong \(\Delta\)OAT: TH vuông góc OA; AI vuông góc OT, I thuộc TH
=> I là trực tâm \(\Delta\)OAT => OI vuông góc AT (đpcm).
c) (Hình 2) Gọi N là trung điểm của DE, có ngay ON vuông góc DE (Do DE là dây của (O))
Dễ thấy 5 điểm A,B,N,O,C cùng thuộc đường tròn đường kính OA => Tứ giác ABNC nội tiếp
=> ^BAN = ^BCN. Mà ^PEN = ^BAN (Vì PE // AB) nên ^BCN = ^PEN hay ^PCN = ^PEN
=> Tứ giác CNPE nội tiếp => ^ENP = ^ECP = ^ECB = ^EDB => NP // BD (2 góc đồng vị bằng nhau)
Xét \(\Delta\)DQE có: N là trung điểm DE, NP // BD, P thuộc QE => P là trung điểm của QE hay PQ = PE (đpcm).