K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2017

a, áp dụng t/c 2 tiếp tuyến cắt nhau suy ra góc bom =moa

xét tam giác cân OBAcó  bom =moa suy ra oh vg ab

tứ giác đó nt do tổng 2 góc đối 

b,cách mk là cm tam giác MEA đồng dạng vs MAF gg

17 tháng 6 2017

đầu tiên bn nối I vs H Ta có IH là đg trung bình trong tam giác kab

                                    =>IH// KB ,HAY GÓC IHA =CBA MÀ CBA =CEA =1/2 AC 

                                                          =>TỨ GIÁC IHAE nt suy ra góc HEA CỘNG GÓC HIA =180 ĐỘ

                                           GÓC HIA =BKA =90 ĐỘ 

                                   TỪ ĐÓ SUY RA GÓC HEA =90 ĐỘ  HAY GÓC HEA LÀ GÓC VUÔNG

26 tháng 12 2022

Nội tiếp chắn nửa đg tròn hả bạn :^?

 

1 tháng 12 2023

O A B M H C D K F I

a/

Xét tg vuông AMO và tg vuông BMO có

MA=MB (2 tiếp tuyến cùng xp từ 1 điểm ngoài hình tròn)

OA=OB=R

=> tg AMO = tg BMO (2 tg vuông có 2 cạnh góc vuông bằng nhau)

\(\Rightarrow\widehat{AMO}=\widehat{BMO}\)

Xét tg MAB có

MA=MB (cmt) => tg MAB cân tại M

\(\widehat{AMO}=\widehat{BMO}\) (cmt)

\(\Rightarrow OM\perp AB\) (trong tg cân đường phân giác của góc ở đỉnh tg cân đồng thời là đường cao)

Xét tg vuông AMO có

\(AM^2=MO.MH\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giưa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

b/

Ta có \(\widehat{ADC}=90^o\) (góc nt chắn nửa đường tròn) => tg ACD vuông tại D \(\Rightarrow AD\perp MC\)

Xét tg vuông AMC có

\(AM^2=MD.MC\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giưa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

Ta có

\(AM^2=MO.MH\) (cmt)

\(\Rightarrow MH.MO=MD.MC\)

c/ Xét tg AMK có

\(OM\perp AB\left(cmt\right)\Rightarrow OH\perp AK\)

\(AD\perp MC\left(cmt\right)\Rightarrow AD\perp MK\)

\(\Rightarrow KI\perp AB\) (trong tg 3 đường cao đồng quy)

Phần còn lại không biết điểm E là điểm nào?

 

 

20 tháng 12 2023

loading... loading... 

1 tháng 6 2020

tự làm là hạnh phúc của mỗi công dân.