K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2021

undefined

Tham khảo cái này nhé e

nguồn Cho đường tròn (O). Từ điểm M nằm ngoài (O) vẽ tiếp tuyến MD, MC với (O) (C, D là các tiếp điểm). Vẽ cát tuyến MAB không đi qua tâm O, A nằm giữa M và B. Tia phân giác góc ACB cắt AB ở E. a) Chứng minh MC = ME. b) Chứng minh DE là tia phân giác góc ADB - Toán học Lớp 9 - Bài tập Toán học Lớp 9 - Giải bài tập Toán học Lớp 9 | Lazi.vn - Cộng đồng Tri thức & Giáo dục

4 tháng 3 2021

E cảm ơn a

22 tháng 4 2020

O A B F D I K H C E

22 tháng 4 2020

a.Ta có DE là đường kính của (O) 

\(\Rightarrow EF\perp DF\)

Mà \(DE\perp BC=K\Rightarrow\widehat{EKI}=\widehat{EFD}=90^0\)

=> DFIK nội tiếp 

b ) Ta có : 

\(AK\perp DE,EF\perp DF\)

\(\Rightarrow\widehat{AFE}=\widehat{AKE}=90^0\)

\(\Rightarrow AFKE\) nội tiếp 

Mà IK = HK , \(DE\perp BC=K\) => DE là trung trực của HI 

 \(\Rightarrow\widehat{DHA}=\widehat{DHK}=\widehat{DIK}=\widehat{DFK}=\widehat{DEA}\)

c ) Ta có : \(\widehat{EIK}=\widehat{DAK}\)do AFKE nội tiếp

\(\widehat{AKD}=\widehat{EKI}=90^0\)

\(\Rightarrow\Delta AKD~\Delta EKI\left(g.g\right)\)

\(\Rightarrow\frac{AK}{EK}=\frac{KD}{KI}\)

\(\Rightarrow KE.KD=KI.AK\)

Lại có : \(\widehat{AFI}=\widehat{AKD}=90^0\Rightarrow\Delta AFI~\Delta AKD\left(g.g\right)\)

\(\Rightarrow\frac{AF}{AK}=\frac{AI}{AD}\Rightarrow AE.AD=AI.AK\)

Mà BCDF nội tiếp 

\(\Rightarrow\widehat{AFB}=\widehat{ACD}\Rightarrow\Delta ABF~\Delta ADC\left(g.g\right)\)

\(\Rightarrow\frac{AF}{AC}=\frac{AB}{AD}\Rightarrow AF.AD=AB.AC\)

\(\Rightarrow AB.AC=AI.AK\)

=> KI.AB.AC = AI.AK.KI= AI.KE.KD

3 tháng 5 2021

Mình chưa vẽ hình nhưng mà câu c bạn có sai không? Tại vì bạn ghi thế thì có khác gì chứng minh AK=AD đâu. Bạn xem lại nhá 

4 tháng 5 2021

\(\frac{2}{AK}=\frac{1}{AD}+\frac{1}{AE}\) nhá

1. Cho \(\widehat{xOy}=90^0\). Lấy \(I\in Ox,K\in Oy\). Vẽ (I ; OK) cắt tia đối của IO tại M .Vẽ (K ; OI) cắt tia đối của KO tại N. (I) và (K) cắt nhau tại A và B. Tiếp tuyến tại M của (I) và tiếp tuyến tại N của (K) cắt nhau tại C. Chứng minh A,B,C thẳng hàng2. Cho \(\Delta ABC\) nhọn, đường cao BD và CE cắt nhau tại H. Gọi I là trung điểm BC. Chứng minh ID, IE là tiếp tuyến của đường tròn ngoại...
Đọc tiếp

1. Cho \(\widehat{xOy}=90^0\). Lấy \(I\in Ox,K\in Oy\). Vẽ (I ; OK) cắt tia đối của IO tại M .Vẽ (K ; OI) cắt tia đối của KO tại N. (I) và (K) cắt nhau tại A và B. Tiếp tuyến tại M của (I) và tiếp tuyến tại N của (K) cắt nhau tại C. Chứng minh A,B,C thẳng hàng

2. Cho \(\Delta ABC\) nhọn, đường cao BD và CE cắt nhau tại H. Gọi I là trung điểm BC. Chứng minh ID, IE là tiếp tuyến của đường tròn ngoại tiếp \(\Delta ADE\)

3. Cho \(\Delta ABC\) vuông ở A nội tiếp (O) đường kính 5cm . Tiếp tuyến với đường tròn tại C cắt phân giác \(\widehat{ABC}\)tại K . BK cắt AC tại D và BD = 4cm . Tính độ dài BK .  

4. Cho (O ; R).Từ một điểm M ở ngoài (O), kẻ 2 tiếp tuyến MA,MB với (O) (A, B là các tiếp điểm). Qua A kẻ đường thẳng song song với MO cắt (O) tại E, ME cắt (O) tại F. MO cắt AF, AB lần lượt tại N, H. Chứng minh MN = NH

5. Cho \(\Delta ABC\)nhọn (AB < AC) nội tiếp đường tròn (O). Kẻ \(BD\perp AO\)(D nằm giữa A và O). Gọi M là trung điểm BC. AC cắt BD, MD lần lượt tại N, F. BD cắt (O) tại E. BF cắt AD tại H. Chứng minh DF // CE

0
18 tháng 5 2018

cho tam giác ABC ( AB<AC) có ba góc nhọc nội tiếp đường tròn tâm (O) và D là hình chiếu của B trên AO sao cho D nằm giữa A và O. gọi M là trung điểm của BC, N là giao điểm của BD và AC, F là giao điểm của MD và AC, E là giao điểm thứ hai của BD với (O), H là giao điểm của BF và AD.

1/ chứng minh tứ giác BDOM nội tiếp và góc MOD + NAE=180. 

2/ chứng minh DF //CE.

3/ chứng minh CA là tia phân giác của góc BCE

4/ Chứng minh HN vuông góc với AB