Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hay :))
A B C C1 B1 A1 D E F H1 G1 G2 H3
\(\Delta ABC\) có \(C_1\) là trung điểm của \(AB\) và \(B_1\) là trung điểm của \(AC\) nên \(B_1C_1\) là đường trung bình của \(\Delta ABC\)
\(\Rightarrow\)\(B_1C_1=\frac{1}{2}BC=A_1B=A_1C\)
Và \(B_1C_1//BC\)\(\Rightarrow\)\(\widehat{AC_1B_1}=\widehat{C_1BA_1}\) ( hai góc đồng vị )
Xét \(\Delta AB_1C_1\) và \(\Delta A_1BC_1\) có :
\(AC_1=BC_1\) \(\left(GT\right)\)
\(\widehat{AC_1B_1}=\widehat{C_1BA_1}\) ( chứng minh trên )
\(B_1C_1=A_1B\) ( chứng minh trên )
Do đó : \(\Delta AB_1C_1=\Delta A_1BC_1\) \(\left(c-g-c\right)\)
Chứng minh tương tự với các \(\Delta AB_1C_1\) và \(\Delta A_1B_1C\)\(;\)\(\Delta A_1BC_1\) và \(\Delta A_1B_1C\)\(;\)\(\Delta A_1BC_1\) và \(\Delta A_1B_1C_1\) ta có :
\(\Delta AB_1C_1=\Delta A_1BC_1=\Delta A_1B_1C=\Delta A_1B_1C_1\)
Mà \(S_{AB_1C_1}+S_{A_1BC_1}+S_{A_1B_1C}+S_{A_1B_1C_1}=S_{ABC}\)
\(\Rightarrow\)\(S_{AB_1C_1}+S_{A_1B_1C_1}=\frac{1}{2}S_{ABC}\)
Bài toán trở thành Chứng minh \(S_{A_1EC_1DB_1F}=S_{AB_1C_1}+S_{A_1B_1C_1}\)
Do 4 tam giác bằng nhau nên các tam giác tạo từ các đường cao của chúng tương ứng bằng nhau
\(\Rightarrow\)\(\Delta C_1EA_1=\Delta ADB_1\)\(;\)\(\Delta B_1FA_1=\Delta ADC_1\)
Mà \(S_{A_1EC_1DB_1F}=S_{C_1EA_1}+S_{B_1FA_1}+S_{C_1DB_1}+S_{A_1B_1C_1}\)
\(\Leftrightarrow\)\(S_{A_1EC_1DB_1F}=\left(S_{ADB_1}+S_{ADC_1}+S_{C_1DB_1}\right)+S_{A_1B_1C_1}=S_{AB_1C_1}+S_{A_1B_1C_1}\) ( điều phải chứng minh )
...
A B C A B C 1 1 1 D E F H
Gọi H là trực tâm của \(\Delta\)A1B1C1.
Ta thấy: \(\Delta\)ABC có A1, B1, C1 là trung điểm các cạnh BC, CA, AB
Cho nên: \(S_{A_1B_1C_1}=S_{AB_1C_1}=S_{BA_1C_1}=S_{CA_1B_1}=\frac{S_{ABC}}{4}\). Ta đi chứng minh \(S_{A_1EC_1DB_1F}=2S_{A_1B_1C_1}\)
Xét \(\Delta\)A1B1C1: H là trực tâm => A1H vuông góc B1C1. Mà B1C1 // BC => A1H vuông góc BC
Nhưng: C1E cũng vuông góc BC nên A1H // C1E. Tương tự: C1H // A1E
Do đó: Tứ giác A1HC1E là hình bình hành => \(S_{A_1HC_1}=S_{A_1EC_1}=\frac{S_{A_1HC_1E}}{2}\)
Tương tự, ta có: \(S_{A_1HB_1}=S_{A_1FB_1}=\frac{S_{A_1HB_1F}}{2};S_{B_1HC_1}=S_{B_1DC_1}=\frac{S_{B_1HC_1D}}{2}\)
\(\Rightarrow S_{A_1HC_1}+S_{A_1HB_1}+S_{B_1HC_1}=\frac{S_{A_1EC_1DB_1F}}{2}\Rightarrow S_{A_1EC_1DB_1F}=2.S_{A_1B_1C_1}=2.\frac{S_{ABC}}{4}=\frac{S_{ABC}}{2}\) (đpcm).
(P/S: Các bn có thể tham khảo thêm cách này)
Bạn đã biết làm bài đó chưa vậy .... nếu rồi thì gửi cho mình được không
Cho tam giác ABC và điểm M trong tam giác. Gọi khoảng cách từ M đến các cạnh BC, CA, AB lần lượt là da, db, dc và khoảng cách từ M đến các đỉnh A,B,C là x,y,z và AB=c, BC=a, CA=b. CMR:
x+y+z\(\ge\)2(da+db+dc) ( BĐT Erdos )
hình bạn tự vẽ nhé
a) Ta có : \(\frac{HI}{AI}=\frac{S_{HIC}}{S_{AIC}}=\frac{S_{HIB}}{S_{AIB}}=\frac{S_{HIC}+S_{HIB}}{S_{AIC}+S_{AIB}}=\frac{S_{BHC}}{S_{ABC}}\)
Tương tự : \(\frac{HK}{BK}=\frac{S_{AHC}}{S_{ABC}}\); \(\frac{HS}{CS}=\frac{S_{AHB}}{S_{ABC}}\)
\(\Rightarrow\frac{HI}{AI}+\frac{HK}{BK}+\frac{HS}{CS}=\frac{S_{AHC}+S_{BHC}+S_{AHB}}{S_{ABC}}=1\)
b) tương tự câu a : \(\frac{HA_1}{AI}=\frac{2HI}{AI}=\frac{2S_{BHC}}{S_{ABC}}\).....
A B C M A1 B1 C1 H K
Gọi MK và AH lần lượt là đường cao của các tam giác MBC và tam giác ABC.
Dễ thấy : AH // MK => \(\frac{MK}{AH}=\frac{MA_1}{AA_1}\)
Ta có : \(\frac{MA_1}{AA_1}=\frac{MK}{AH}=\frac{S_{MBC}}{S_{ABC}}\) (1) . Tương tự : \(\frac{MB_1}{BB_1}=\frac{S_{AMC}}{S_{ABC}}\left(2\right)\) ; \(\frac{MC_1}{CC_1}=\frac{S_{ABM}}{S_{ABC}}\left(3\right)\)
Cộng (1) , (2) , (3) theo vế được : \(\frac{MA_1}{AA_1}+\frac{MB_1}{BB_1}+\frac{MC_1}{CC_1}=\frac{S_{MBC}+S_{MAC}+S_{MAB}}{S_{ABC}}=\frac{S_{ABC}}{S_{ABC}}=1\)
Vậy \(\frac{MA_1}{AA_1}+\frac{MB_1}{BB_1}+\frac{MC_1}{CC_1}=1\) (đpcm)