Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do EI là tiếp tuyến của (O) tại I
⇒ EI OI
⇒ ∆OEI vuông tại I
⇒ O, E, I cùng thuộc đường tròn đường kính OE (1)
Do EK là tiếp tuyến của (O) tại K
⇒ EK OK
⇒ ∆OEK vuông tại K
⇒ O, E, K cùng thuộc đường tròn đường kính OE (2)
Từ (1) và (2) suy ra E, I, O, K cùng thuộc đường tròn đường kính OE
Xét tứ giác MIOK có
\(\widehat{MIO}+\widehat{MKO}=90^0+90^0=180^0\)
=>MIOK là tứ giác nội tiếp
=>M,I,O,K cùng thuộc một đường tròn
lấy A là trung điểm của OM,xét tam giác OMI có:
A là trung điểm của OM
O,M,I thuộc 1 đường tròn. (1)
Xét tam giác OMK có A là trung điểm của OM
O,M,K thuộc 1 đường tròn (2)
từ (1) và (2) suy ra 4 điểm M,I,O,K cùng thuộc 1 đường tròn
Lời giải:
Vì $MA,MB$ là tiếp tuyến của $O$ nên $MA\perp OA, MB\perp OB$
$\Rightarrow \widehat{MAO}=\widehat{MBO}=90^0$
Xét tứ giác $MAOB$ có $\widehat{MAO}+\widehat{MBO}=90^0+90^0=180^0$. Mà 2 góc này đối nhau nên $MAOB$ là tứ giác nội tiếp.
$\Rightarrow M, A,O,B$ cùng thuộc 1 đường tròn (1)
Mặt khác:
Tam giác $ONP$ cân tại $O$ (do $ON=OP=R$) nên trung tuyến $OK$ đồng thời là đường cao.
$\Rightarrow \widehat{MKO}=90^0$
Xét tứ giác $MAKO$ có $\widehat{MAO}=\widehat{MKO}=90^0$. Mà 2 góc này cùng nhìn cạnh $MO$ nên $MAKO$ là tứ giác nội tiếp.
$\Rightarrow M,A,K,O$ cùng thuộc 1 đường tròn (2)
Từ $(1); (2)\Rightarrow M, A, O, K,B$ cùng thuộc 1 đường tròn.
Lời giải:
Vì $MA,MB$ là tiếp tuyến của $O$ nên $MA\perp OA, MB\perp OB$
$\Rightarrow \widehat{MAO}=\widehat{MBO}=90^0$
Xét tứ giác $MAOB$ có $\widehat{MAO}+\widehat{MBO}=90^0+90^0=180^0$. Mà 2 góc này đối nhau nên $MAOB$ là tứ giác nội tiếp.
$\Rightarrow M, A,O,B$ cùng thuộc 1 đường tròn (1)
Mặt khác:
Tam giác $ONP$ cân tại $O$ (do $ON=OP=R$) nên trung tuyến $OK$ đồng thời là đường cao.
$\Rightarrow \widehat{MKO}=90^0$
Xét tứ giác $MAKO$ có $\widehat{MAO}=\widehat{MKO}=90^0$. Mà 2 góc này cùng nhìn cạnh $MO$ nên $MAKO$ là tứ giác nội tiếp.
$\Rightarrow M,A,K,O$ cùng thuộc 1 đường tròn (2)
Từ $(1); (2)\Rightarrow M, A, O, K,B$ cùng thuộc 1 đường tròn.
a, Xét tứ giác MEOF có \(\widehat{MEO}=\widehat{MFO}=90^0\)
=> Tứ giác MEOF nội tiếp (t/c)
=> 4 điểm M,E,O,F cùng thuộc đường tròn đường kính MO (1)
Xét tứ giác AFOM có : \(\widehat{MAO}=\widehat{MFO}=90^0\)
=> Tứ giác AFOM nội tiếp (t/c)
=> 4 điểm M,A,O,F cùng thuộc đường tròn đường kính MO (2)
Từ (1) và (2) => Năm điểm A, M, E, O, F cùng thuộc đường tròn đường kính MO
1) Trong (O) có CD là dây cung không đi qua (O) và H là trung điểm CD
\(\Rightarrow OH\bot CD\Rightarrow\angle OHI=90=\angle OAI\Rightarrow OHAI\) nội tiếp
Ta có: \(\angle OAI+\angle OBI=90+90=180\Rightarrow OAIB\) nội tiếp
\(\Rightarrow O,H,A,B,I\) cùng thuộc 1 đường tròn
2) Vì IA,IB là tiếp tuyến \(\Rightarrow IB=IA=OA=OB\Rightarrow AOBI\) là hình thoi
có \(\angle OAI=90\Rightarrow AOBI\) là hình vuông
AB cắt OI tại E.Dễ chứng minh được E là trung điểm AB
Ta có: \(AB=\sqrt{OA^2+OB^2}=\sqrt{2}R\Rightarrow AE=\dfrac{\sqrt{2}}{2}R\)
\(\Rightarrow\) bán kính của (AOBI) là \(\dfrac{\sqrt{2}}{2}R\)
\(\Rightarrow\) diện tích của (AOBI) là \(\left(\dfrac{\sqrt{2}}{2}R\right)^2.\pi=\dfrac{1}{2}\pi R^2\)
3) OH cắt AB tại F
Ta có: \(\angle IEF=\angle IHF=90\Rightarrow IEHF\) nội tiếp
\(\Rightarrow OH.OF=OE.OI\) (cái này chỉ là đồng dạng thôi,bạn tự chứng minh nha)
mà \(OE.OI=OB^2=R^2\Rightarrow OF=\dfrac{R^2}{OH}\)
mà H cố định \(\Rightarrow\) F cố định \(\Rightarrow AB\) đi qua điểm F cố định
a: Xét tứ giác ABOC có \(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)
nên ABOC là tứ giác nội tiếp
=>A,B,O,C cùng thuộc một đường tròn
b: Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AB=AC
=>A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
từ (1) và (2) suy ra OA là đường trung trực của BC
=>OA\(\perp\)BC tại H
Xét ΔOBA vuông tại B có BH là đường cao
nên \(OH\cdot OA=OB^2\)
mà OB=OD(=R)
nên \(OH\cdot OA=OD^2\)
=>\(\dfrac{OH}{OD}=\dfrac{OD}{OA}\)
Xét ΔOHD và ΔODA có
\(\dfrac{OH}{OD}=\dfrac{OD}{OA}\)
\(\widehat{HOD}\) chung
Do đó: ΔOHD đồng dạng với ΔODA
a: Xét tứ giác ABOC có
góc OBA+góc OCA=180 độ
nên OBAC là tứ giác nội tiếp
Xét (O) có
AB,AC là các tiếp tuyến
nên AB=AC
mà OB=OC
nên OA là trung trực của BC
b: Xét ΔABE và ΔADB có
góc ABE=góc ADB
góc BAE chung
Do đó: ΔABE đồng dạng với ΔADB
=>AB/AD=AE/AB
=>AB^2=AD*AE=AH*AO