Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
 I C B D O E
.Ta có :ICIC là tiếp tuyến của (O)
\(\Rightarrow\widehat{CIE}=\widehat{IBC}\)
\(\Rightarrow\)ΔICE∼ΔIBC(g.g)\(\Rightarrow\)
IEIC=ICIB→ICE^=IBC^→ΔICE∼ΔIBC(g.g)→IEIC=ICIB
\(\Rightarrow\)IC2=IE.IB→IC2=IE.IB
Ta có : BD//AC\(\Rightarrow\widehat{IAE}=\widehat{EDB}=\widehat{ABE}\)
\(\Rightarrow\)ΔAIE∼ΔBIA(g.g)\(\Rightarrow\)
AIBI=IEIA\(\Rightarrow\)
IA2=IB.IE→ΔAIE∼ΔBIA(g.g)→AIBI=IEIA→IA2=IB.IE
→IA2=IC2→IA=IC→I→IA2=IC2→IA=IC→I là trung điểm AC
Dễ có IC là tiếp tuyến của đường tròn nên IC2 = IB.IE (1)
Theo tính chất của góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung, ta có: ^EBA = ^BDA
Lại có: ^BDA = ^DAC (BD//AC, hai góc so le trong)
Từ đó suy ra ^EBA = ^DAC
∆AIE và ∆BIA có: ^AIB là góc chung, ^EBA = ^DAC (cmt) nên ∆AIE ~ ∆BIA (g.g)
=>\(\frac{IA}{IE}=\frac{IB}{IA}\Rightarrow IA^2=IB.IE\)(2)
Từ (1) và (2) suy ra IA2 = IC2 hay IA = IC
Vậy I là trung điểm của AC (đpcm)
a: ΔODE cân tại O có OI là trung tuyến
nên OI vuông góc DE
góc OIA+góc OBA=180 độ
=>OIAB nội tiếp
b: Xét ΔKCE và ΔKBC có
góc KCE=góc KBC
góc K chung
=>ΔKCE đồng dạng với ΔKBC
=>KC/KB=KE/KC
=>KC^2=KB*KE
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
O A B C D M E T I H K J O B C A D E P Q N Hình 1 Hình 2
a) Xét đường tròn (O): 2 tiếp tuyến AB, AC => AB=AC (T/c 2 tiếp tuyến cắt nhau) => OA là trung trực của BC (Vì OB=OC)
=> OA vuông góc BC. Mà BD//AO nên BC vuông góc BD (Qh song song vuông góc) => CD là đường kính của (O)
Do đó: ^CED=900 (Góc nt chắn nửa đường tròn) hoặc ^CEA=900 => \(\Delta\)ACE vuông tại E
Xét \(\Delta\)ACE: Vuông đỉnh E, trung tuyến EM => ME = MC. Từ đó có: \(\Delta\)MEO = \(\Delta\)MCO (c.c.c)
=> ^MEO = ^MCO (Cặp góc tương ứng). Mà ^MCO=900 nên ^MEO=900 => ME là tiếp tuyến của (O) (đpcm).
b) Gọi K là giao điểm của OE với đoạn BC, H là giao điểm của OA và BC, J là giao điểm của EM với OA.
Xét \(\Delta\)OTJ có: TH vuông góc OJ (Do BC vuông góc OA); OE vuông góc TJ (Do EM là tiếp tuyến (O))
TH cắt OE tại K nên K là trực tâm \(\Delta\)OTJ => JK vuông góc OT (*)
Qua hệ thức lượng trong tam giác vuông, dễ có: R2 = OE2 = OB2 = OH.OA => \(\Delta\)OHE ~ \(\Delta\)OEA (c.g.c)
=> ^OEH = ^OAE hay ^KEH = ^OAI (1)
Dễ thấy tứ giác HKEJ nội tiếp đường tròn đường kính KJ => ^KEH = ^HJK (2)
Từ (1) và (2) suy ra: ^OAI = ^HJK => JK // AI (2 góc đồng vị bằng nhau) (**)
Từ (*) và (**) suy ra: AI vuông góc OT (Qh song song vuông góc)
Xét trong \(\Delta\)OAT: TH vuông góc OA; AI vuông góc OT, I thuộc TH
=> I là trực tâm \(\Delta\)OAT => OI vuông góc AT (đpcm).
c) (Hình 2) Gọi N là trung điểm của DE, có ngay ON vuông góc DE (Do DE là dây của (O))
Dễ thấy 5 điểm A,B,N,O,C cùng thuộc đường tròn đường kính OA => Tứ giác ABNC nội tiếp
=> ^BAN = ^BCN. Mà ^PEN = ^BAN (Vì PE // AB) nên ^BCN = ^PEN hay ^PCN = ^PEN
=> Tứ giác CNPE nội tiếp => ^ENP = ^ECP = ^ECB = ^EDB => NP // BD (2 góc đồng vị bằng nhau)
Xét \(\Delta\)DQE có: N là trung điểm DE, NP // BD, P thuộc QE => P là trung điểm của QE hay PQ = PE (đpcm).