K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2019

bạn chỉ giúp mình câu b đii

27 tháng 1 2019

de mk giup

5 tháng 6 2017

a) xét tứ giác KMPC ta có : MPC = 90 (MP\(\perp\)BC)

MKC = 90 (MK\(\perp\)AC)

\(\Rightarrow\) MPC + MKC = 180

mà 2 góc này ở vị trí đối nhau \(\Rightarrow\) tứ giác KMPC nội tiếp

\(\Rightarrow\) MPK = MCK (2 góc nội tiếp cùng chắng cung MK của tứ giác KMPC)

MCK = MBC (góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cùng chắng cung CM của (o))

\(\Rightarrow\) MPK = MBC (đpcm)

5 tháng 6 2017

xét tứ giác PBMI ta có :

BPM = 90 (MP\(\perp\)BC)

BIM = 90 (MI\(\perp\)BA)

\(\Rightarrow\) BPM + BIM = 180

mà 2 góc này ở vị trí đối nhau \(\Rightarrow\) tứ giác PBMI là tứ giác nội tiếp

\(\Rightarrow\) MIP = MBP (2 góc nội tiếp cùng chắng cung MP của tứ giác PBMI )

mà MBP = MPK (chứng minh trên)

\(\Rightarrow\) MIP = MPK

ta có : PMI + PBI = 180

PMK + PCK = 180

mà ABC = ACB

\(\Rightarrow\) PMK = PMI

xét \(\Delta\) MIP và \(\Delta\) MPK

ta có : PMK = PMI (chứng minh trên)

MIP = MPK (chứng minh trên)

\(\Rightarrow\) \(\Delta\) MIP đồng dạng \(\Delta\) MPK

\(\Leftrightarrow\) \(\dfrac{MI}{MP}\) = \(\dfrac{MP}{MK}\) \(\Leftrightarrow\) MP2 = MI . MK

\(\Rightarrow\) MI . MK . MP = MP3

\(\Rightarrow\) MI . MK . MP lớn nhất \(\Leftrightarrow\) MP lớn nhất

\(\Rightarrow\) M nằm chính giửa BC

29 tháng 5 2019

O A B C E I D F
a) xét tứ giác ABOC, ta có:
\(\widehat{OBA}=90^O\)
\(\widehat{OCA}=90^O\)
=> \(\widehat{OBA}+\widehat{OCA}=180^O \)
=> tứ giác ABOC nội tiếp
b) Xét tam giác OBC, ta có:
OB = OC = R 
=> tam giác OBC cân tại O
=> OE vừa là đường cao vừa là đường phân giác dường phân giác góc O.
=> BE = CE 
=> OA vuông góc BC ( đường kính đi qua trung điểm của dây cung thì vuông góc với dây đó)
Xét tam giác AOB và tam giác ABE, ta có:
góc A chung
góc OBA = BEA = 90o
=>AOB đồng dạng ABE
=> \(\frac{AB}{AE}=\frac{OB}{BE}\)
=>AB.BE = OB.AE
câu c và d cậu tự làm nhé tớ ko giải dc xin lỗi cậu nha