K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2018

Gọi số cần tìm là ab (a, b là các chữ số, b > a)

Theo bài ra ta có ba là số nguyên tố.

Và ab + ba là số chính phương.

Ta có \(\overline{ab}+\overline{ba}=11\left(a+b\right)\)

Do ab + ba là số chính phương chia hết cho 11 nên nó chia hết cho 121.

Do ab , ba đều là số có hai chữ số nên ab + ba = 121.

Vậy nên a + b = 11 = 2 + 9 = 3 + 8 = 4 + 7 = 5 + 6

Kết hợp điều kiện b > a và ba là số nguyên tố, ta tìm được số thỏa mãn là 38.

19 tháng 11 2015

Gọi 2 số chính phương liên tiếp đó là n; (n+1)2 

ta có : \(n^2+\left(n+1\right)^2+n^2\left(n+1\right)^2=\)

Không đúng: VD: 25;36 : 25+36 +25.36=71+900  =971 không là số chính phương

19 tháng 11 2015

mình tính ra là 161 

 

15 tháng 11 2016

Gọi hai số chính phương liên tiếp là k2 và (k+1)2

Ta có:

k2 + (k+1)2 + k2(k+1)2

= k2 + k2 + 2k + 1 +k4 + 2k3 + k2

= k4 + 2k3 + 3k2 + 2k + 1

= (k2+k+1)2

= [k(k+1)+1]2 là số chính phương lẻ.

10 tháng 5 2016

Hai số chính phương liên tiếp lúc nào cũng là 1 chẵn và một lẻ. Nên tổng của chúng sẽ là số lẻ và tích của chúng  sẽ là số chẵn mà số lẻ cộng với số chẵn sẽ ra số lẻ. 

2 tháng 8 2023

Gọi 2 số chính phương liên tiếp đó là \(n^2,\left(n+1\right)^2\). Ta có:

\(P=n^2+\left(n+1\right)^2+n^2\left(n+1\right)^2\)

\(=n^2+n^2+2n+1+n^2\left(n^2+2n+1\right)\)

\(=n^4+2n^3+3n^2+2n+1\)

Ta có \(\dfrac{P}{n^2}=n^2+2n+3+\dfrac{2}{n}+\dfrac{1}{n^2}\)

\(=\left(n+\dfrac{1}{n}\right)^2+2\left(n+\dfrac{1}{n}\right)+1\)

\(=\left(n+\dfrac{1}{n}+1\right)^2\)

\(\Rightarrow P=\left[n\left(n+\dfrac{1}{n}+1\right)\right]^2=\left(n^2+n+1\right)^2=\left[n\left(n+1\right)+1\right]^2\)

 Dễ dàng kiểm chứng được \(2|n\left(n+1\right)\), do đó \(n\left(n+1\right)+1\) là số lẻ, suy ra đpcm.

 

 

 

2 tháng 8 2023

Hai số chính phương liên tiếp là \(n^2;\left(n+1\right)^2\)

Theo đề ta có :

\(n^2+\left(n+1\right)^2+n^2\left(n+1\right)^2\)

\(=n^2+n^2+2n+1+n^4+2n^3+n^2\)

\(=\left(n^4+n^3+n^2\right)+\left(n^3+n^2+n\right)+\left(n^2+n+1\right)\)

\(=n^2\left(n^2+n+1\right)+n\left(n^2+n+1\right)+\left(n^2+n+1\right)\)

\(=n^2\left(n^2+n+1\right)+n\left(n^2+n+1\right)+\left(n^2+n+1\right)\)

\(=\left(n^2+n+1\right)^2\)

\(=\left[n\left(n+1\right)+1\right]^2\)

mà \(n\left(n+1\right)⋮2\) (là 2 số tự nhiên liên tiếp)

\(\Rightarrow n\left(n+1\right)+1\) là số lẻ

\(\Rightarrow\left[n\left(n+1\right)+1\right]^2\) là số chính phương lẻ

\(\Rightarrow dpcm\)

7 tháng 11 2018

Gọi 2 số chính phương liên tiếp là a2 và (a + 1)2

Ta có: \(A=a^2+\left(a+1\right)^2+a^2\left(a+1\right)^2\)

\(=\left[a\left(a+1\right)\right]^2+2a^2+2a+1\)

\(=\left[a\left(a+1\right)\right]^2+2a\left(a+1\right)+1=\left[a\left(a+1\right)+1\right]^2\)

Ta thấy \(a\left(a+1\right)+1\) là số lẻ nên A là số chính phương lẻ (đpcm)