K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2016

\(\frac{1}{\sqrt{2}+\sqrt{3}+\sqrt{5}}=\frac{\sqrt{2}+\sqrt{3}-\sqrt{5}}{\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)\left(\sqrt{2}+\sqrt{3}-\sqrt{5}\right)}\)
\(=\frac{\sqrt{2}+\sqrt{3}-\sqrt{5}}{\left(\sqrt{2}+\sqrt{3}\right)^2-\left(\sqrt{5}\right)^2}=\frac{\sqrt{2}+\sqrt{3}-\sqrt{5}}{2+2\sqrt{2\cdot3}+3-5}=\frac{\sqrt{2}+\sqrt{3}-\sqrt{5}}{5+2\sqrt{6}-5}=\frac{\sqrt{6}\cdot\left(\sqrt{2}+\sqrt{3}-\sqrt{5}\right)}{\sqrt{6}\cdot2\sqrt{6}}=\frac{2\sqrt{3}+3\sqrt{2}-\sqrt{30}}{12}\)

18 tháng 9 2016

Ta có \(\frac{1}{\sqrt{2}+\sqrt{3}+\sqrt{5}}\) = \(\frac{\sqrt{2}+\sqrt{3}-\sqrt{5}}{5+2\sqrt{6}-5}\)

\(\frac{\sqrt{6}\left(\sqrt{2}+\sqrt{3}-\sqrt{5}\right)}{12}\)

AH
Akai Haruma
Giáo viên
8 tháng 9 2019

Lời giải:

Ta có:

\(\frac{\sqrt{3}+\sqrt{5}}{(\sqrt{5}+1)(\sqrt{3}-1)}=\frac{(\sqrt{3}+\sqrt{5})(\sqrt{5}-1)(\sqrt{3}+1)}{(\sqrt{5}+1)(\sqrt{5}-1)(\sqrt{3}-1)(\sqrt{3}+1)}\)

\(=\frac{(\sqrt{3}+\sqrt{5})(\sqrt{5}-1)(\sqrt{3}+1)}{(5-1)(3-1)}=\frac{(\sqrt{3}+\sqrt{5})(\sqrt{5}-1)(\sqrt{3}+1)}{8}\)

3 tháng 8 2020

a/ \(\frac{1}{2+\sqrt{3}}-\frac{1}{2-\sqrt{3}}+5\sqrt{3}\)

\(=\frac{2-\sqrt{3}}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}-\frac{2+\sqrt{3}}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}+5\sqrt{3}\)

\(=\frac{2-\sqrt{3}}{4-3}-\frac{2+\sqrt{3}}{4-3}+5\sqrt{3}\)

\(=2-\sqrt{3}-2-\sqrt{3}+5\sqrt{3}\)

\(=3\sqrt{3}\)

Vậy..

3 tháng 8 2020

b/ \(\frac{1}{\sqrt{5}+2}-\sqrt{9+4\sqrt{5}}\)

\(=\frac{1}{\sqrt{5}+2}-\sqrt{\left(\sqrt{5}+2\right)^2}\)

\(=\frac{1}{\sqrt{5}+2}-\left|\sqrt{5}+2\right|\)

\(=\frac{\sqrt{5}-2}{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}-\sqrt{5}-2\)

\(=\sqrt{5}-2-\sqrt{5}-2\)

\(=-4\)

Vậy..

15 tháng 7 2017

\(A=\frac{1}{\sqrt{5}-\sqrt{3}+2}\)

\(A=\frac{1}{\left(\sqrt{5}+2\right)+\sqrt{3}}\)

\(A=\frac{1\left(\left(\sqrt{5}+2\right)-\sqrt{3}\right)}{\left(\left(\sqrt{5}+2\right)+3\right)\left(\left(\sqrt{5}+2\right)-\sqrt{3}\right)}\)

\(A=\frac{\sqrt{5}+2-\sqrt{3}}{\left(\sqrt{5}+2\right)^2-3}\)

\(A=\frac{\sqrt{5}+2-\sqrt{3}}{6-4\sqrt{5}}\)

\(A=\frac{\left(\sqrt{5}+2-\sqrt{3}\right)\left(6+4\sqrt{5}\right)}{\left(6-4\sqrt{5}\right)\left(6+4\sqrt{5}\right)}\)

\(A=\frac{6\sqrt{5}+20+12+8\sqrt{5}-6\sqrt{3}-4\sqrt{15}}{36-16\cdot5}\)

\(A=\frac{14\sqrt{5}+32-6\sqrt{3}-4\sqrt{15}}{-44}\)

\(A=\frac{6\sqrt{3}+4\sqrt{15}-14\sqrt{5}-32}{44}\)

Nhớ k cho mik đó nha ....... rồi kb lun ahihi

12 tháng 9 2019

có công thức rồi mà cậu,bài này dễ,cậu thử áp dụng công thức xemm..

19 tháng 7 2015

\(\frac{1}{\sqrt{8}-\sqrt{3}-\sqrt{5}}=\frac{1}{\sqrt{8}-\left(\sqrt{3}+\sqrt{5}\right)}=\frac{\sqrt{8}+\left(\sqrt{3}+\sqrt{5}\right)}{8-\left(\sqrt{3}+\sqrt{5}\right)^2}\)

\(=\frac{\sqrt{8}+\sqrt{3}+\sqrt{5}}{8-\left(3+2\sqrt{3}\sqrt{5}+5\right)}=\frac{\sqrt{8}+\sqrt{3}+\sqrt{5}}{8-8-2\sqrt{15}}\)

\(=\frac{\sqrt{8}+\sqrt{3}+\sqrt{5}}{-2\sqrt{15}}=\frac{\sqrt{15}.\left(\sqrt{8}+\sqrt{3}+\sqrt{5}\right)}{-2.15}=\frac{2\sqrt{30}+3\sqrt{5}+5\sqrt{3}}{-30}\)