Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\left(-3+3\sqrt{6}+4+2\sqrt{6}-12-4\sqrt{6}\right)\left(\sqrt{6}+11\right)\)
=(căn 6-11)(căn 6+11)
=6-121=-115
\(\left(\dfrac{15}{\sqrt{6}+1}+\dfrac{4}{\sqrt{6}-2}-\dfrac{12}{3-\sqrt{6}}\right)\left(\sqrt{6}+11\right)\)
\(=\left(\dfrac{15\left(\sqrt{6}-1\right)}{\left(\sqrt{6}+1\right)\left(\sqrt{6}-1\right)}+\dfrac{4\left(\sqrt{6}+2\right)}{\left(\sqrt{6}-2\right)\left(\sqrt{6}+2\right)}-\dfrac{12\left(3+\sqrt{6}\right)}{\left(3-\sqrt{6}\right)\left(3+\sqrt{6}\right)}\right)\left(\sqrt{6}+11\right)\)
\(=\left(\dfrac{15\left(\sqrt{6}-1\right)}{\left(\sqrt{6}\right)^2-1^2}+\dfrac{4\left(\sqrt{6}+2\right)}{\left(\sqrt{6}\right)^2-2^2}-\dfrac{12\left(3+\sqrt{6}\right)}{3^2-\left(\sqrt{6}\right)^2}\right)\left(\sqrt{6}+11\right)\)
\(=\left(\dfrac{15\left(\sqrt{6}-1\right)}{5}+\dfrac{4\left(\sqrt{6}+2\right)}{2}-\dfrac{12\left(3+\sqrt{6}\right)}{3}\right)\left(\sqrt{6}+11\right)\)
\(=\left[3\left(\sqrt{6}-1\right)+2\left(\sqrt{6}+2\right)-4\left(3+\sqrt{6}\right)\right]\left(\sqrt{6}+11\right)\)
\(=\left(3\sqrt{6}-3+2\sqrt{6}+4-12-4\sqrt{6}\right)\left(\sqrt{6}+11\right)\)
\(=\left(\sqrt{6}-11\right)\left(\sqrt{6}+11\right)\)
\(=\left(\sqrt{6}\right)^2-11^2\)
\(=6-121\)
\(=-115\)
\(a.\dfrac{3\sqrt{2}-2\sqrt{3}}{\sqrt{3}-\sqrt{2}}-\dfrac{3}{3-\sqrt{6}}=\dfrac{\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{3}-\sqrt{2}}-\dfrac{\sqrt{3}.\sqrt{3}}{\sqrt{3}\left(\sqrt{3}-\sqrt{2}\right)}=\sqrt{6}-\dfrac{\sqrt{3}}{\sqrt{3}-\sqrt{2}}=\dfrac{3\sqrt{2}-3\sqrt{3}}{\sqrt{3}-\sqrt{2}}=\dfrac{-3\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{3}-\sqrt{2}}=-3\) \(b.\left(2\sqrt{2}-\sqrt{3}\right)^2-2\sqrt{3}\left(\sqrt{3}-2\sqrt{2}\right)=\left(2\sqrt{2}-\sqrt{3}\right)\left(2\sqrt{2}+\sqrt{3}\right)=8-3=5\) \(c.\left(\dfrac{1}{3-\sqrt{5}}-\dfrac{1}{3+\sqrt{5}}\right):\dfrac{5-\sqrt{5}}{\sqrt{5}-1}=\dfrac{3+\sqrt{5}-3+\sqrt{5}}{9-5}:\sqrt{5}=\dfrac{2\sqrt{5}}{4}.\dfrac{1}{\sqrt{5}}=\dfrac{\sqrt{5}}{2}.\dfrac{1}{\sqrt{5}}=\dfrac{1}{2}\) \(d.\left(3-\dfrac{a-2\sqrt{a}}{\sqrt{a}-2}\right)\left(3+\dfrac{\sqrt{ab}-3\sqrt{a}}{\sqrt{b}-3}\right)=\left(3-\sqrt{a}\right)\left(3+\sqrt{a}\right)=9-a\)
Bài 2:
a: =>25x=35^2=1225
=>x=49
b: \(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+\dfrac{4}{3}\cdot3\sqrt{x+5}=6\)
\(\Leftrightarrow3\sqrt{x+5}=6\)
=>x+5=4
=>x=-1
a: \(=\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}-\sqrt{ab}=\sqrt{ab}-\sqrt{ab}=0\)
b: \(=\dfrac{\left(\sqrt{x}-2\sqrt{y}\right)^2}{\sqrt{x}-2\sqrt{y}}+\dfrac{\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)
\(=\sqrt{x}-2\sqrt{y}+\sqrt{y}=\sqrt{x}-\sqrt{y}\)
c: \(=\sqrt{x}+2-\dfrac{x-4}{\sqrt{x}-2}\)
\(=\sqrt{x}+2-\sqrt{x}-2=0\)
Mọi ngươi giúp em với ạ chứ em làm câu a Bài 1 và 2 ra kết quả dài quá :(
Bài 1:
a: \(P=\dfrac{a-4-5-\sqrt{a}-3}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}\)
\(=\dfrac{a-\sqrt{a}-12}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}=\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\)
b: Để P<1 thì P-1<0
\(\Leftrightarrow\dfrac{\sqrt{a}-4-\sqrt{a}+2}{\sqrt{a}-2}< 0\)
=>căn a-2>0
=>a>4
a)\(\left(5\sqrt{2}+2\sqrt{5}\right)\cdot\sqrt{5}-\sqrt{250}\)
\(=5\sqrt{10}+10-5\sqrt{10}\\ =10\)
b)\(\dfrac{2\sqrt{3}}{\sqrt{6}-2}-\dfrac{2\sqrt{3}}{\sqrt{6}+2}\)
\(=\dfrac{2\sqrt{3}}{\sqrt{2}\left(\sqrt{3}-\sqrt{2}\right)}-\dfrac{2\sqrt{3}}{\sqrt{2}\left(\sqrt{3}+\sqrt{2}\right)}\)
\(=\dfrac{\sqrt{6}\left(\sqrt{3}+\sqrt{2}\right)-\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)}{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}\)
\(=\dfrac{3\sqrt{2}+2\sqrt{3}-3\sqrt{2}+2\sqrt{3}}{3-2}\)
\(4\sqrt{3}\)
b)CM: \(ab\sqrt{1+\dfrac{1}{a^2b^2}}-\sqrt{a^2b^2+1}=0\)
\(VT=ab\sqrt{\dfrac{a^2b^2+1}{\left(ab\right)^2}}-\sqrt{a^2b^2+1}\)
\(VT=ab\dfrac{\sqrt{a^2b^2+1}}{ab}-\sqrt{a^2b^2+1}\)
\(VT=\sqrt{a^2b^2+1}-\sqrt{a^2b^2+1}\)
\(VT=0=VP\)
\(a,\dfrac{-3}{5}.\sqrt{\left(-0.5\right)^2}\\ =\dfrac{-3}{5}.0,5\\ =\dfrac{-3}{5}.\dfrac{1}{2}\\ =-\dfrac{3}{10}\)
Câu (b) nhìn hơi lạ lạ á :v
\(c,\sqrt{\left(1-\sqrt{7}\right)^2}+\sqrt{7}\\ =\sqrt{7}-1+\sqrt{7}\\ =2\sqrt{7}-1\)
\(d,\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\\ =\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}\\ =3+\sqrt{2}-\left(3-\sqrt{2}\right)\\ =3+\sqrt{2}-3+\sqrt{2}\\ =2\sqrt{2}\)
a) \(\sqrt{\dfrac{3-\sqrt{5}}{3+\sqrt{5}}}\)
\(=\sqrt{\dfrac{\left(3-\sqrt{5}\right)^2}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}}\)
\(=\dfrac{\sqrt{\left(3-\sqrt{5}\right)^2}}{\sqrt{3^2-\left(\sqrt{5}\right)^2}}\)
\(=\dfrac{\left|3-\sqrt{5}\right|}{\sqrt{9-5}}\)
\(=\dfrac{3-\sqrt{5}}{2}\)
b) \(\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}\)
\(=\sqrt{\dfrac{\left(2-\sqrt{3}\right)^2}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}}\)
\(=\dfrac{\sqrt{\left(2-\sqrt{3}\right)^2}}{\sqrt{2^2-\left(\sqrt{3}\right)^2}}\)
\(=\dfrac{\left|2-\sqrt{3}\right|}{\sqrt{4-3}}\)
\(=\dfrac{2-\sqrt{3}}{1}\)
\(=2-\sqrt{3}\)
a: \(=\sqrt{\dfrac{\left(3-\sqrt{5}\right)\left(3-\sqrt{5}\right)}{4}}=\dfrac{3-\sqrt{5}}{2}\)
b: \(=\sqrt{\dfrac{\left(2-\sqrt{3}\right)^2}{1}}=2-\sqrt{3}\)
d: \(=\left(-3+3\sqrt{6}+4+2\sqrt{6}-12-4\sqrt{6}\right)\left(\sqrt{6}+11\right)\)
=(căn 6-11)(căn 6+11)
=6-121=-115